Neutralizing BGP Hijacking within a Minute

Εξουδετέρωση επιθέσεων BGP στο λεπτό

(funded by RIPE NCC Community Projects 2017)

Vasileios Kotronis

(Joint work with: Pavlos Sermpezis, Petros Gigis, Dimitris Mavrommatis, Xenofontas Dimitropoulos, Alberto Dainotti, Alistair King)

GRNET Digital Technology Symposium, 6 November, 2018

How do people deal with hijacks today? \rightarrow **RPKI**

- X < 10% of prefixes covered by ROAs [1]
- X Why? \rightarrow limited adoption & costs/complexity [2]
- X Does not protect the network against all attack types

[1] NIST. RPKI Monitor <u>https://rpki-monitor.antd.nist.gov/</u>, Nov 2018.

[2] P. Sermpezis, et. al., "A survey among Network Operators on BGP Prefix Hijacking", in ACM SIGCOMM CCR, Jan 2018.

How do people deal with hijacks today? \rightarrow 3rd parties

- X Comprehensiveness: detect only simple attacks
- X Accuracy: lots of false positives (FP) & false negatives (FN)
- **X Speed**: manual verification & then manual mitigation
- X Privacy: need to share private info, routing policies, etc.

How much time an operational network was affected by a hijack [1]

Our solution: ARTEMIS

- Operated in-house: no third parties
- Real-time Detection
- Automatic Mitigation
- **Comprehensive**: covers *all* hijack types
- Accurate: 0% FP, 0% FN for basic types;
 low tunable FP-FN trade-off for remaining types
- ✓ Fast: neutralizes (detect & mitigate) attacks in < 1 minute</p>
- Privacy preserving: no sensitive info shared
- ✓ Flexible: configurable mitigation per-prefix + per-hijack type

[1] ARTEMIS website <u>www.inspire.edu.gr/artemis/</u>

[2] P. Sermpezis et al., "ARTEMIS: Neutralizing BGP Hijacking within a Minute", in ACM/IEEE ToN, vol. 26, iss. 6, 2018.

TRISTERE []][] [3] G. Chaviaras et al., "ARTEMIS: Real-Time Detection and Automatic Mitigation for BGP Prefix Hijacking", ACM SIGCOMM'16 demo.

ARTEMIS: visibility of <u>all</u> impactful hijacks

caida

[1] P. Sermpezis et al., "ARTEMIS: Neutralizing BGP Hijacking within a Minute", in IEEE/ACM ToN, vol. 26, iss. 6, 2018.

AS-PATH

ARTEMIS: detection of all hijack types

Class of Hijacking Attack			Control-plane System/Service		Data-plane System/Service		Hybrid System/Service			
Affected	AS-PATH	Data	ARTEMIS	Cyclops	PHAS	iSpy	Zheng et al.	HEAP	Argus	Hu et al.
prefix	(Type)	plane		(2008) 21	(2006) 36	(2008) 68	(2007) 70	(2016) 57	(2012) 60	(2007) [32]
Sub	U	*	√	×	×	×	×	×	×	×
Sub	0/1	BH	√	×	~	×	×	~	~	~
Sub	0/1	IM	√	×	~	×	×	~	×	\checkmark
Sub	0/1	MM	√	×	\checkmark	×	×	×	×	×
Sub	≥ 2	BH	\checkmark	×	×	×	×	\checkmark	√	\checkmark
Sub	≥ 2	IM	~	×	×	×	×	\checkmark	×	\checkmark
Sub	≥ 2	MM	√	×	×	×	×	×	×	×
Exact	0/1	BH	√	√	~	~	×	×	~	\checkmark
Exact	0/1	IM	√	√	~	×	\checkmark	×	×	\checkmark
Exact	0/1	MM	~	\checkmark	\checkmark	×	\checkmark	×	×	×
Exact	≥ 2	BH	√	×	×	~	×	×	~	\checkmark
Exact	≥ 2	IM	1	×	×	×	\checkmark	×	×	\checkmark
Exact	≥ 2	MM	\checkmark	×	×	×	\checkmark	×	×	×

TABLE 1: Comparison of BGP prefix hijacking detection systems/services w.r.t. ability to detect different classes of attacks.

ARTEMIS: *accurate* detection

Hijacking Attack			ARTEMIS Detection						
Prefix	AS-PATH	Data	False	False	Detection	Needed Local	Detection		
	(Type)	Plane	Positives (FP)	Negatives (FN)	Rule	Information	Approach		
Sub-prefix	*	*	None	None	Config. vs BGP updates	Pfx.	Sec. 5.2		
Squatting	*	*	None	None	Config. vs BGP updates	Pfx.	Sec. 5.2		
Exact	0/1	*	None	None	Config. vs BGP updates	Pfx. + ASN	Sec. 5.3		
		12 TH		support and a		(+ neighbor ASN)			
Exact	≥ 2	*	< 0.3/day for	None	Past Data vs BGP updates	Pfx.+ Past AS links	Sec. 5.4		
10 Arr 125		0.001	> 73% of ASes	1971-03 Alle	(bidirectional link)		Stage 1		
Exact	≥ 2	*	None for 63% of ASes	< 4%	BGP updates	Pfx.	Sec. 5.4		
			$(T_{s2} = 5min,$		(waiting interval,		Stage 2		
			$th_{s2} > 1$ monitors)		bidirectional link)		050		

ARTEMIS: real-time monitoring, detection in 5 sec.!

RTH (1] P. Se

[1] P. Sermpezis et al., "ARTEMIS: Neutralizing BGP Hijacking within a Minute", in IEEE/ACM ToN, vol. 26, iss. 6, 2018.

12

ARTEMIS: mitigation methods

- DIY: react by **de-aggregating** if you can
- Otherwise (e.g., /24 prefixes) **get help** from other ASes
 - \rightarrow announcement (MOAS) and tunneling from siblings or helper AS(es)

TABLE 7: Mean percentage of polluted ASes, when outsourcing BGP announcements to organizations providing DDoS protection services; these organizations can provide highly effective outsourced mitigation of BGP hijacking.

_	without	top					
	outsourcing	ISPs	AK	CF	VE	IN	NE
Type0	50.0%	12.4%	2.4%	4.8%	5.0%	7.3%	11.0%
Type1	28.6%	8.2%	0.3%	0.8%	0.9%	2.3%	3.3%
Type2	16.9%	6.2%	0.2%	0.4%	0.4%	1.3%	1.1%
Type3	11.6%	4.5%	0.1%	0.4%	0.3%	1.1%	0.5%

ARTEMIS: automated & flexible mitigation

- Automated: triggered immediately upon detection
- Flexible: configure per prefix / hijack type / impact / etc.

Prototype: supported features

- Real-time monitoring of BGP updates related to network's prefixes
- Real-time detection of BGP prefix hijacking attacks/events:
 - exact-prefix type-0/1
 - sub-prefix (of any type)
 - squatting attacks
- Syslog/email notifications of hijacks
- Manual mitigation of BGP prefix hijacking attacks
- Web interface used by the network administrator
- Support for both IPv4 and IPv6 prefixes
- Modularity/extensibility

Affected	AS-PATH	Data	ARTEMIS
prefix	(Type)	plane	
Sub	U	*	√
Sub	0/1	BH	\checkmark
Sub	0/1	IM	\checkmark
Sub	0/1	MM	√
Sub	≥ 2	BH	√
Sub	≥ 2	IM	√
Sub	≥ 2	MM	√
Exact	0/1	BH	√
Exact	0/1	IM	√
Exact	0/1	MM	\checkmark
Exact	≥ 2	BH	√
Exact	≥ 2	IM	√
Exact	≥ 2	MM	√

Prototype: High-level system overview

Prototype: configuration file

- Define prefix, ASN, monitor groups
- Declare ARTEMIS rules:
 - "My ASes ASX and ASY originate prefix P"
 - "And they advertise it to ASZ"
 - "When a hijack occurs \rightarrow mitigate manually"

Sample Rule	Sample Incoming BGP update	Hijack
prefixes:	[, <subprefix_of_my_prefix>]</subprefix_of_my_prefix>	S
origin_asns: - *my_origin	[, <not_my_origin>, <my_prefix>]</my_prefix></not_my_origin>	0
neighbors: - *my_neighbor mitigation: manual	[, <not_my_neighbor>, <my_origin>, <my_prefix>]</my_prefix></my_origin></not_my_neighbor>	1
prefixes: - *my_prefix mitigation: manual	[, <my_prefix>]</my_prefix>	Q

#		
#	ARTEMIS Configuration File	
#		
#	Start of Prefix Definitions	
נמ	refixes:	
	forth prefix main: &forth prefix main	
	- 139.91.0.0/16	
	forth prefix lamda: &forth prefix lamda	
	- 139.91.250.0/24	
	forth prefix vod: &forth prefix vod	
	- 139.91.2.0/24	
#	End of Prefix Definitions	
#	Start of Monitor Definitions	
mo	onitors:	
	riperis: ['']	
	bgpstreamlive:	
	- routeviews	
	- ris	
	betabmp:	
	- betabmp	
	# exabgp:	
	# - ip: 192.168.1.1	
	# port: 5000	
#	End of Monitor Definitions	
#	Start of ASN Definitions	
as	sns:	
	forth_asn: &forth_asn	
	8522	
	grnet_forth_upstream: &grnet_forth_upstream	
	5408	
	lamda_forth_upstream_back: &lamda_forth_upstream_back	
	56910	
	<pre>vodafone_forth_upstream_back:</pre>	
۶3	vodafone_forth_upstream_back	
	12361	
#	End of ASN Definitions	
#	Start of Rule Definitions	
rι	ules:	

Prototype: What's next?

- Open-sourcing ARTEMIS
- Revamped UI
- Monitoring hijack progress automatically
- Automated configuration
- Advanced detection + mitigation
- Using data-plane measurements for
 - automated verification of hijack events
 - detection of events with limited regional impact
- Cooperation with CAIDA on Internet Observatory
 - centralized service for detection of BGP hijacks and anomalies (including MitM)

Thank you!

- Current ARTEMIS testers:
 - Major greek ISP
 - Internet2 (major US academic network)
 - FORTH (dual-homed edge network)
- What do we want from you?
 - Feedback

- Advice on integrating ARTEMIS in operational environments
- Collaboration for testing ARTEMIS (e.g., configuration)
- Try demo at:

http://inspire.edu.gr/artemis/demo/ (creds: guest / guest@artemis2018)

- Mail me at: <u>vkotronis@ics.forth.gr</u>
- Visit the ARTEMIS website <u>http://www.inspire.edu.gr/artemis/</u>

funded by:

BACKUP

BGP prefix hijacking is a critical threat

 \rightarrow to your organization & customers & peers

- **Outages** in the Internet cause losses of millions of \$\$\$
- Interception of bitcoins, credit card transactions, passwords, ...
- **Bad reputation** for hijacked networks: security, service reliability

...only in 2017: 5,304 hijacks, with 3,106 organizations as victims [1]

BACKUP

Threat Model \rightarrow the hijacker:

- controls a single AS and its edge routers
- has full control of the control plane and data plane within its own AS
- can arbitrarily manipulate the:
 - BGP messages that it sends to its neighboring ASes (control plane)
 - traffic that crosses its network (data plane)
- has otherwise no control over BGP messages and traffic exchanged between two other ASes.

 \rightarrow Extensions (future work): multiple ASes controlled by a single hijacker

Type-N, N≥2, hijacks: Stage 1

- Triggered upon a BGP update (for a monitored prefix) whose AS-PATH contains a N-hop AS-link (N ≥ 2) that is not included in the previously verified AS-links list
- Legitimate if this link has been observed in the opposite direction in the AS-links list from monitors and local BGP routers
 - (10 months history) (and there appears consistently at least 1 AS on the left of the link*)
- Example with fake link directly attached to hijacker:

<my_prefix, MY_AS, MY_PEER, BAD_AS, ...> attack announcement

<any_prefix, ..., **BAD_AS**, MY_PEER, ..., **BAD_AS**, ...> pre-attack fails (discard loops)

<any_prefix, ..., **BAD_AS**, MY_PEER, ..., **2nd_BAD_AS**, ...> pre-attack succeeds (beyond adopted threat model)

* Works also when hijacker is hiding behind a legitimate upstream provider!

Type-N, N≥2, hijacks: Stage 1

Type-N, N≥2, hijacks: Stage 2 w/ FN of small impact

- Stage 2
 - Wait 5 minutes
 - Recheck tables on monitors + local routers
 - Optional: decisions based on observable impact

(e.g., number of monitors involved)

Note: What we do not cover as hijacks \rightarrow route leaks

- Not actual hijacks in the classic threat model
 - All links involved in the announced paths are valid!
- Fall in the context of "policy violations", e.g.,
 - What if Google decided to be a Tier-1 global transit network for one hour?
 - What if your friendly IXP peer decided to act as your upstream?
- Detecting them requires detailed knowledge of in-path policies
 - These are not publicly available
 - $\circ \quad \text{Existing datasets} \rightarrow \text{would yield high numbers of FP}$
 - 30% of observed routes are not consistent with available routing policy data [1]
 - Ongoing work! (beyond "good filtering")

