
Numerical weather prediction in high-performance
computing (HPC) environments

Implementation of the WRF model on ARIS

Theodore M. Giannaros
Post-doc Researcher
National Observatory of Athens, IERSD
Email: thgian@noa.gr
Web: http://theodoregiannaros.eu

http://theodoregiannaros.eu

Introduction: Overview of parallelism
Parallelism in WRF
• Distributed memory (DM) - “MPI”
• Shared-memory (SM) - “OpenMP”
• Clusters of SM processors (“hybrid MPI+OpenMP”)

2 of 18

50+ compilation options: Serial, DM, SM, Hybrid (DM+SM), numerous compilers
and architectures

Introduction: DM versus SM (1)
Domain decomposition
DM works in “patches”: MPI processes
SM works in “tiles”: Threads in each MPI process

3 of 18

Introduction: DM versus SM (2)
Example
2 nodes on ARIS, each with 20 CPUs; 40 CPUs in total

So, what are my options?
40 MPI processes, 1 thread per each (pure DM)
OMP_NUM_THREADS=1; mpirun -np 40 ./wrf.exe
OR
20 MPI processes, 2 threads per each (hybrid DM+SM)
OMP_NUM_THREADS=2; mpirun -np 20 ./wrf.exe
OR
10 MPI processes, 4 threads per each (hybrid DM+SM)
OMP_NUM_THREADS=4; mpirun -np 10 ./wrf.exe
OR
and so on …

Experience with WRF has shown that hybrid DM+SM does not always have a positive
effect on computational performance
Better to use “pure MPI”

4 of 18

Getting started: Read, think, design
Define your objectives
What are your scientific and/or practical objectives? Why do you need to run
WRF? How will you know that your simulations are successful?

Get to know your problem
Review literature! What are the atmospheric processes involved? Which are the
most important (clouds, radiation, convection, etc.)? What is known? Is anything
missing? Judge the efficacy of your “simulations-to-do”.

Determine available observational datasets
What observations are available? Again, become familiar with the processes that
you want to study. How will the observations be used for verifying and/or
complementing your simulations? Judge the adequacy of your “simulations-to-do”.

Prepare your strategy
Are you going to focus on a case study? If yes, which one and why? Are there
adequate observations for verifying your “simulations-to-do”? Will you set up an
operational weather forecasting service? What are the practical requirements?

5 of 18

Model configuration: Domains (1)
Consider first
• Target horizontal grid spacing
• Resolution of initialization data
Most often, you will need to adopt a nesting strategy.

Hints
• Place domain boundaries away from each other, and away from steep topography
• Odd parent-child ratios are preferred (e.g. 3:1, 5:1)
• Higher horizontal resolution will also require higher vertical resolution
• Use at least 30-35 vertical levels; larger density closer to the ground and to the

model top
• Lambert: mid-latitudes, Mercator: low-latitudes, Lat-Lon: global, Rotated lat-lon:

regional
• Start inside-out (first the nest, move up)

Do remember!
Avoid the “grey zone” (4-10 km)

6 of 18

Model configuration: Domains (2) 7 of 18
Static (input) data
Does land data represent your area adequately well? If not, consider using alternative
datasets (land use, topography)
May have profound impact on your results!

Real-world example (200 m domain for Rio de Janeiro)

Default USGS (30 s) SRTM (9s)

Model configuration: Domains (3) 8 of 18
Dynamic (input) data
Ask yourself: how good are the data used for initializing WRF?

Real-world example
Wind forecasts for the Guanabara bay in Rio de Janeiro, Brazil, verified against
observed data
GFS: Forecasts driven by 0.5deg, 6h NCEP/GFS
ECMWF: Forecasts driven by 0.5deg, 6h ECMWF/IFS

Model configuration: Domains (4)
From a computational point of view
• Assuming a 3:1 parent-child ratio, the nest will require 3x as many time steps to

keep pace with the parent grid.
• Rule of thumb: a nested WRF simulation costs ~4x the cost of a single parent

domain simulation.
• Coarse domains are not a “headache”: doubling their grid points will result to ~25%

increase in nested domain simulation time.

Estimating (roughly) the cost (3:1 ratio example)
1. If the fine and the coarse grid have the same dimensions (# of grid points), then

the required CPU for integrating a single time step will be about the same for both
domains.

2. Given that the fine grid time step is 1/3 of the coarse grid time step, it is deduced
that the nest will require 3x the CPU to catch up with the coarse domain.

9 of 18

Model configuration: Physics
Too many options! Where to start from?
• Back to basics: Which processes are important? Review literature. What others

did?
• Consider first well documented (tried) schemes

Hints
• Convective schemes are generally not required at dx<4 km
• Sophisticated microphysics schemes (double-moment, detailed species) may not be

necessary at dx>>10 km
• Try to have consistent physics between the domains or use 1-way nesting
• If your simulation spans more than 5 days, you could start thinking to adopt the SST

update option

10 of 18

Model configuration: Initialization & Spin-up
Garbage in, garbage out
NWP is a problem of initial conditions! Common “problematic” variables:
• Soil moisture and temperature
• Sea-surface temperature
• Bad representation of land/sea mask
Double-check your initial conditions (wrfinput_d0*)!

Let the model warm-up
• Allow for a reasonable spin-up period to avoid “noise” in certain fields (e.g.

pressure).
• Spin-up is of great importance for convection, particularly deep convection.
• No rules of thumb; Trial and error process to identify the “ideal” spin-up period
• Computationally costly, but desired!

11 of 18

Model configuration: Integration
“Stability” versus “efficiency”
Recommended (maximum) integration time step (s) equals 6*dx(km)
Most often, this needs to be downscaled to avoid numerical instability (CFL violation)

Example
1-way nested, 15 km coarse grid (CG) and 5 km fine grid (FG)
• Ideally: CG dt=6*15=90s, FG dt=90/3=30s (parent dt divided by 3:1 ratio)
Result: Model “blows up” quickly after the beginning of the simulation

• Reduce time step: CG dt=60s, FG=60/3=20s
Result: Model becomes numerically steady; but also 90/60=1.5x more expensive

• Reduce time step only for CG: CG dt=60s, FG=60/2 (parent dt divided by 2:1 time
step ratio)

Result: Model becomes numerically steady; save computational time

Remember
You can reduce the CG time step without reducing model performance, as long as you
are able to tweak the FG time step (adjust parent-child time step ratio; trial and error)

12 of 18

Model configuration: Tackling CFL errors
Model “blows up” with CFL errors
Troubleshooting:
Check “where” the model becomes unstable: (a) which vertical level, (b) which i,j in
model domain

A. If CFL violation occurs at the first few vertical levels, then it’s probably due
to steep orography: (i) check i,j to verify (even approximately) whether the
instability is over complex terrain; if that is the case, consider smoothing
orography (GEOGRID.TBL; smooth option: 1-2-1)

B. If CFV violation occurs at upper vertical levels, then the available options
you have are: (i) use the damping option for vertical velocities
(w_damping=1), (ii) use a different damping option (damp_opt=1,2,3), (iii)
reduce your integration time step, (iv) consider restructuring your eta_levels
(if you defined them explicitly)

13 of 18

Model configuration: I/O
I/O optimization
I/O optimization can be a “bottleneck” for improving WRF performance. On some
occasions, I/O takes more time compared to integration!

Good to remember
Output data quickly
Output small data
Output less data

Hints
• Use runtime i/o to reduce output variables (iofields_filename=“varsout.txt”). This

will even allow you to cut your file sizes down to half!
• Consider your experiment. Do you need to output data every 1 h or less?
• Use parallel netCDF during compilation (not tested on ARIS)
• Use option to output 1 file per MPI process (io_form_history=102). Reported to

save a lot time, but you need to manually join files at the end. Officially unsupported.

14 of 18

Benchmarking WRF (1)
Definitions
Performance: Model speed ignoring I/O and initialization costs, measured directly as
the average cost per model time step over a representative integration period. Can be
expressed as either simulation speed or floating-point rate.
Simulation speed: Measure of the actual time-to-solution. Expresses the ratio of
model time simulated to the actual time, and is computed as the ratio of model time
step to the average time per time step, over a representative integration period.
Scaling: The ratio of increase in simulation speed to the increase in parallel
processes.

ARIS benchmarking tests
Case A: Single domain, 235x175x40, 24 km (Europe)
Case B: Case A & 685x235x40, 6 km (Mediterranean)
Case C: Case B & 538x499, 2 km (Greece)
• 60 h numerical simulations
• Benchmark period: T0+13 - T0+60 (48 hours)
• Same physics for all cases and domains

15 of 18

Benchmarking WRF (2)
Case C

16 of 18

Benchmarking WRF: Tweaking MPI
Definitions
nproc_x: number of processors to use for decomposition in x-direction
nproc_y: number of processors to use for decomposition in y-direction
By default, WRF will use the square root of processors for deriving values for nproc_x
and nproc_y. If this is not possible, some close values will be used.

Hint
WRF responds better to a more rectangular decomposition, i.e. nproc_x<<nproc_y:
• Longer inner loops for better vector and registry reuse
• Better cache blocking
• More efficient halo exchange communication pattern
Best combination defined by trial and error!

Take-away for MPI
• As the number o MPI tasks increases, the amount of work inside each MPI task

decreases
• More MPI tasks, more contention for due to communications is likely
• As the computation time gets smaller compared to the communications time, parallel

efficiency suffers

17 of 18

Thank you for your attention!
Questions? Comments?

Theodore M. Giannaros
Post-doc Researcher
National Observatory of Athens, IERSD
Email: thgian@noa.gr
Web: http://theodoregiannaros.eu

http://theodoregiannaros.eu

