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Part 1

General Concepts of High Performance Computing (HPC)

1.1 Definition of HPC
High Performance Computing (HPC) refers to the practice of aggregating computing

power in a way that delivers much greater performance than one could get out of
a typical desktop computer or workstation in order to solve large problems in science,
engineering, and business.

Figure 1.1: ARIS - HPC Infrastructure in Greece https://www.hpc.grnet.gr/

HPC systems can process data and perform complex calculations at
extremely high speeds.
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1.2 The Advent of Clustering: Late 1990s and 2000s

e The Beowulf Beowulf cluster, uses
inexpensive, commodity hardware
connected by a network.

e The first Beowulf cluster (1994) com-

prised 16 1486 DX4 processors and §

reached 500 MFLOPS.

Taking an Intel Core 19 processor
with 10 cores, a conservative clock
speed of 3.0 GHz, and assuming it can
perform 16 FLOPS per cycle per core,
the theoretical peak performance would

be: 10 cores x 3.0 GHz x 16 FLOCZ;?JCZG —
480 GFLOPS

Figure 1.2: The Borg, a 52-node Beowulf cluster used by the McGill University
pulsar group to search for pulsations from binary pulsars. Copyrighted free use,
https://commons.wikimedia.org/w/index.php?curid=119482
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1.3 Components of an HPC System
An HPC system typically involves:

e Compute Nodes: These are the individual servers that provide the processing
power. Each node contains one or more CPUs (Central Processing Units) or GPUs
(Graphics Processing Units), and often both.

e Networking: A high-speed network interconnects the compute nodes, allowing for
rapid communication and data transfer between nodes.

e Storage: Fast, large-capacity storage systems are required for input/output (I1/0)
operations, storing the data that is generated and used by applications running on
the HPC system.

e Software: This includes the operating systems, programming models, and applications
and tools specific to HPC tasks.

1.4 CPUs, GPUs and Nodes
e A cluster divided into CPU and GPU partitions
e A CPU node highlighted - multiple CPU nodes exist within the CPU partition.

e User’s allocation in the GPU partition is indicated, showing a combination of
RAM and GPU resources assigned to a user.
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Threads on 1 node of MeluXina supercomputer

https://docs.Ixp.lu/system /overview/

The screenshot was taken using the htop tool, which is a command-line utility for

monitoring Linux processes.
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1.5 Moore’s Law

A transistor is a semiconductor device used to amplify or switch electronic signals and
electrical power. It is one of the basic building blocks of modern electronic devices. In
essence, transistors can be understood as a type of switch that controls the flow of
electricity in a circuit.

An integrated circuit (IC), sometimes called a microchip, is a semiconductor
wafer on which thousands or millions of tiny resistors, capacitors, and transistors are
fabricated. An integrated circuit can function as an amplifier, oscillator, timer, micro-
processor, or even computer memory.

Gordon E. Moore, a co-founder of the semiconductor company Intel, is the person
behind the formulation of Moore’s Law.

In 1965, Moore observed that the number of transistors on integrated
circuits had doubled every year since their invention and predicted that this
trend would continue into the foreseeable future.

A decade later, in 1975, based on the changing pace of technology, he revised his
projection, estimating a doubling approximately every two years.
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Moore’s Law: The number of transistors on microchips doubles every two years [SNgWIk

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. in Data
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.
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1.6 Sample Slurm Script
Sample slurm script to allocate 4 nodes, with 2 * 64 cores each, with hyperthreading (2

threads per core). Check also https://slurm.schedmd.com /shatch.html.
#!/bin/bash

#SBATCH --70b-name=python_job # Descriptive job name

#SBATCH --modes=4 # Request 4 compute nodes

#SBATCH --ntasks-per-node=64 # 64 tasks per node

#SBATCH --cpus-per-task=2 # Allocate 2 CPUs per task (for
. hyperthreading)

#SBATCH --time=04:00:00 # Set a j0b time limit of 4
- hours

#SBATCH --partition=highmem # Submit to a partition suitable
- for your needs

#SBATCH --mem=512GB # Example: Request 512GB memory

. per mnode

# Load necessary modules

module load python/3.9 # Example: Load Python 3.9 module
# Run your Python script

mpirun -np 256 python my_python_script.py
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2.1 Why Parallelization Matters

The following is an example code for the brightness increase of 1000 000 Images:
using Base.Threads, Images

image_paths = ["imagel.jpg", "image2.jpg", ...,
- "imagel_000_000. jpg"]

brightness_increase = 50 # Define your brightness increase

Othreads for path in image_paths
image = load_image(path) # Load the wmage
adjusted_image = clamp.(image .+ brightness_increase, O,
. 25b5) # Adjust brightness
save_image(adjusted_image, "adjusted_$path") # Save the
. adjusted wmage
end
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The code comprises commands for:

e Parallelism: Distributes image processing across threads, making 1,000,000 images
as fast to process as one, assuming suflicient resources.

e Vectorized Computations: Modern processors use vectorized instructions (SIMD)
to operate on multiple data points simultaneously within a single instruction.

Computational Complexity: Turning an O(n) operation into an effective O(1)
operation (assuming perfect parallelization zero overhead).

e Perfect Parallelization is Impractical: Real-world scenarios often have depen-
dencies between loop iterations or require synchronization, making perfect paral-
lelization difficult to achieve.

e Overhead Always Exists (Almost): Even the most optimized systems have some
overhead associated with thread management. While it might be minimal, it’s not
truly zero.
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2.2 Speedup

Speedup in the context of HPC is a metric used to quantify the performance improve-
ment of a parallel system compared to a serial one. It is typically expressed as:

Execution Time on Single Processor

Speedup =
P P Execution Time on Multiple Processors

An ideal speedup is linear, meaning the speedup is equal to the number of
processors. This, however, is rarely the case due to overheads inherent in parallel
systems.

Example:

Let’s say a computational task runs for 80 hours on a single processor. Running the
same task on a parallel system with 4 processors takes 22 hours. Thus, the speedup
IS:

Speedup = % ~ 3.64 < 4

This represents a sub-linear speedup, indicating that there are likely some inefhi-

ciencies in the parallel processing.
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2.3 Parallelization Efficiency

Parallelization efficiency, also known as parallel efficiency, is a measure of how effi-
ciently a computational task runs in parallel compared to serially. It is defined as the
ratio of the speedup achieved to the number of processors used:

Speedup

Parallelization Efficiency =
y Number of Processors

Values of parallelization efficiency range from 0 (no benefit from parallelization) to
1 (perfect linear speedup). In reality, efficiencies are less than 1 due to overheads
like communication between processors, synchronization, and non-uniform
memory access delays.

Example:

If a task takes 100 hours to complete on a single processor and 15 hours to complete
on 8 processors, the speedup is:

100
Speedup = T ~ 6.67

The parallelization eficiency would be:

6.67
Parallelization Efficiency = 5 ~ 0.83

Here, an efliciency of 0.83 means the system is utilizing the parallel processors fairly
efliciently, but there is still some room for improvement.
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2.4 Floating Point Operations Per Second (FLOPS)

There are several metrics to evaluate HPC performance:

FLOPS (Floating Point Operations Per Second): A measure of a computer’s
performance, especially in fields of scientific computations that require floating-point
calculations. Example: A supercomputer with 1 Peta FLOP can perform 10 floating-
point operations per second.

Operations| Name Abbreviation
1 FLOPS FLOPS

10° Kilo FLOPS |KFLOPS

10° Mega FLOPS | MFLOPS

10” Giga FLOPS |GFLOPS

1012 Tera FLOPS | TFLOPS

1010 Peta FLOPS | PFLOPS

1018 Exa FLOPS |EFLOPS

Table 2.1: Magnitudes of FLOPS (Floating Point Operations Per Second)

FLOPS are widely used to assess state-of-the-art Supercomputers.
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e This speed comparison highlights a snail (0.05 km /h) scaling up to the speed of a
rocket (10,000 km /h), increasing by 200,000 times.

e Similarly, the computational power comparison between a laptop (1 TFlop) and
an exascale supercomputer (1 EFlop) is even higher, being 1,000,000 times more
powertful.
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Part 3

Programming Models in HPC

HPC applications are often developed using programming models that support paral-
lelism:

e OpenMP (Open Multi-Processing): An application programming interface
(API) that supports multi-platform shared-memory multiprocessing programming.

e MPI (Message Passing Interface): Used for programming parallel computers.
It involves processes sending and receiving messages to achieve parallelism.

e GPGPU (General-Purpose computing on Graphics Processing Units):

Utilizes GPUs to perform computation in applications traditionally handled by the
CPU.

These models come with their own set of libraries and compilers that are designed to

optimize performance by taking full advantage of the hardware capabilities present
within HPC environments.
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Part 4

State of the art machines

4.1 The Top 500 list

e The Top 500 list is a ranking of the world’s 500 most powerful non-distributed
computer systems. The list is compiled twice a year.

e Performance of the supercomputers on the Top 500 list is measured using the
LINPACK Benchmark. This benchmark tests the system’s ability to solve a
dense system of linear equations, providing a measure of the computer’s floating-
point rate of execution.

25



Rmax
Rank System Cores (PFlop/s)
1 El Capitan - HPE Cray EX255a, AMD 4th Gen EPYC 24C 11,039,616 1,742.00
1.8GHz, AMD Instinct MIS00A, Slingshot-11, TOSS, HPE
DOE/NNSA/LLNL

United States

2 Frontier - HPE Cray EX235a, AMD Optimized 3rd 9,066,176 1,353.00
Generation EPYC 64C 2GHz, AMD Instinct MI250X,
Slingshot-11, HPE Cray 0S, HPE
DOE/SC/0ak Ridge National Laboratory
United States

3 Aurora - HPE Cray EX - Intel Exascale Compute Blade, 9,264,128 1,012.00
Xeon CPU Max 9470 52C 2.4GHz, Intel Data Center GPU
Max, Slingshot-11, Intel
DOE/SC/Argonne National Laboratory
United States

4 Eagle - Microsoft NDvD, Xeon Platinum 8480C 48C 2,073,600 261.20
2GHz, NVIDIA H100, NVIDIA Infiniband NDR, Microsoft
Azure
Microsoft Azure
United States

5 HPCé - HPE Cray EX235a, AMD Optimized 3rd 3,143,520 4£77.90
Generation EPYC 64C 2GHz, AMD Instinct MI250X,
Slingshot-11, RHEL 8.9, HPE
Eni S.p.A.
Italy

Rpeak
(PFlop/s]

2,746.38

2,055.72

1,280.01

B46.84

606.97

Power
(kw)

29,581

24,607

38,698

8.461

https://top500.org/ Nov. 18, 2024
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4.1.1 Exponential Growth
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4.2 Top 8 European Supercomputers

The European High Performance Computing Joint Undertaking (EuroHPC JU) is a
joint initiative between the EU, European countries and private partners to develop
a World Class Supercomputing Ecosystem.
https://eurohpc-ju.europa.eu/index en

1. LUMI (CSC, Finland)

e LUMI-C: 1536 nodes, 128 cores/node, 256-1024 GB RAM /node
e GPU: 2560 nodes, 64 cores/node, 4 GPUs, 128 GB GPU-RAM
e Visualization: 64 nodes, 1 GPU, 48 GB GPU-RAM

e Peak Performance: 550 petaflops

e URL: https://www.lumi-supercomputer.eu/lumis-full-system-architecture-revealed /
2. Leonardo (Cineca, Italy)

e Booster Module: 3456 nodes, 32 cores/node, 512 GB RAM /node, 4 GPUs, 64
GB GPU-RAM

e Data Centric Module: 1536 nodes, 112 cores/node, 512 GB RAM /node
e Peak Performance: 323.4 petaflops
e URL: https://leonardo-supercomputer.cineca.eu/hpc-system/

Part 4: State of the art machines / Section 4.2: Top 8 European Supercomputers / p.28 of 54


https://eurohpc-ju.europa.eu/index_en

3. MareNostrum 5 (Barcelona Supercomputing Center, Spain)

e General Purpose Partition: 6408 nodes, 112 cores/node, 256 GB RAM /node

e Accelerated Partition: 1120 nodes, 64 cores/node, 512 GB RAM /node, 4 GPUs,
64 GB GPU-RAM

e Peak Performance: 314 petaflops

e URL: https://www.bsc.es/innovation-and-services/marenostrum /marenostrum-5
4. MeluXina (LuxProvide, Luxembourg)

e Cluster: 573 nodes, 128 cores/node, 512 GB RAM /node

e Accelerator-GPU: 200 nodes, 64 cores/node, 512 GB RAM /node, 4 GPUs, 40 GB
GPU-RAM

e Large memory: 20 nodes, 128 cores/node, 4096 GB RAM /node
e Peak Performance: 18.29 petaflops
e URL: https://docs.Ixp.lu/system /overview /

5. Karolina (IT4I, Czech Republic)

e CPU: 828 nodes, 128 cores/node, 256-24000 GB RAM /node
e GPU: 72 nodes, 8 GPUs, 40 GB GPU-RAM

e Peak Performance: 15.69 petaflops

e URL: https://www.itdi.cz/en /infrastructure/karolina
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6. Vega (IZUM, Slovenia)
e GPU partition: 60 nodes, 128 cores/node, 512 GB RAM /node, 4 GPUs, 40 GB
GPU-RAM
e CPU node Standard: 768 nodes, 128 cores/node, 256 GB RAM /node
e CPU node Large Memory: 192 nodes, 128 cores/node, 1000 GB RAM /node
e Peak Performance: 10.05 petaflops
e URL: https://doc.vega.izum.si/architecture/

7. Deucalion (Guimaraes, Portugal)

e ARM cluster: 1632 nodes, 48 cores/node
e X386 cluster: 500 nodes, 48+ cores/node
e Accelerated partition: 33 nodes
e Peak Performance: 10 petaflops

e URL: https://macc.fcen.pt /resources#£deucalion
8. Discoverer (Sofia Tech Park, Bulgaria)

e CPU: 1128 nodes, 128 cores/node, 256 GB RAM /node
e CPU-Fat: 18 nodes, 128 cores/node, 1000 GB RAM /node
e Peak Performance: 5.94 petaflops

e URL: https://docs.discoverer.bg /resource overview.html
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4.3 ARIS - HPC Infrastructure in Greece

Compute Nodes

Table 4.1: Nodes Summary

Node Type Count Accelerator Memory Cores

THIN nodes 48 w/o 512 GB  128@2.45 GHz !
GPU nodes 3 4 x 80GB? 512 GB  128@2.45 GHz
FAT nodes 16 w/o 1024 GB  128@2.45 GHz !

https://doc25.aris.grnet.gr/system /
hardware/

Figure 4.1: ARIS - HPC Infrastructure in Greece

1two sockets
2NVIDIA Ampere A100
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Table 4.2: GPU Nodes Technical Information

Architecture

System

Total number of nodes
Total number of cores

Total number of GPUs

Total amount of RAM [TByte]
Total Linpack Performance [TFlop/s]

x86-64

Dell PowerEdge XE8545
3

384

12

1.5

240

Components
Processor Type

AMD EPYC 7763

Nominal Frequency [GHz] 2.45
Processors per Node 2
Cores per Processor 64
Cores per Node 128
Hyperthreading OFF
Accelerators

Accelerator type GPU — NVIDIA Ampere A100
Accelerators per node 4
Accelerator memory [GByte] 80
Memory

Memory per Node [GByte] 512

Figure 4.2: ARIS - HPC Infrastructure in Greece

https://www.hpc.grnet.gr/
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4.4 Daedalus - EuroHPC supercomputer in Greece

The way is open to building a EuroHPC world-class supercomputer in Greece

A hosting agreement has been signed between the EuroHPC Joint Undertaking and
the National Infrastructures for Research and Technology (GRNET) in Greece, where
DAEDALUS, a new EuroHPC supercomputer, will be located.
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e Total sustained performance (Rmax): 89 ,2Petaflops.

e [ixpected to be listed within the top 30 positions on the TOP500 list and top 7
among the EuroHPC JU systems.

e 11PB storage (10PB HDD capacity + 1PB NVMe Flash performance)

e Lavrion Technological and Cultural Park (TCPL) https://eurohpe-ju.europa.eu/
way-open-building-eurohpc-world-class-supercomputer-greece-2022-11-28 en

e June 11, 2024: GRNET S.A. conducts a Public Consultation on
the  Open  Tender  Announcement Issue  https://grnet.gr/2024/06/11/
public-consultation-lavrio-daedalus/
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Part 5

HPC for AI models

5.1 Big Data

Large language models can be trained on datasets containing trillions of words,
which translates to roughly tens of trillions of tokens.

e 100 tokens are approximately equal to 75 words. Tokens can be a whole
word, but they can also be smaller parts of words or even punctuation marks.

e Wikipedia comprises approximately 3 billion tokens.

e The British Library has around 14 million books. Assuming an average book
has 50,000 tokens (words x 1.3 tokens/word), we get a very rough estimate of 700
billion tokens (14 million books * 50,000 tokens/book). The stacks already exceed
~ 750 km of shelving and grow by another 9.6 km every vyear.
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5.2 This i1s a small amount of books!

T 1 o i 15
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Figure 5.1: Library shelves generated with https://chat.openai.com/
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5.3 Al and compute

Since 2102 we observe a 3.4-month doubling in computing power used to train Al
models. https://openai.com /research/ai-and-compute. Petaflops are 10> FLOPS.

Two Distinct Eras of Compute Usage in Training AI Systems

Petaflop/s-days

leth
AlphaGoZero

le+2 Neural Machine

Translation

TI7 Dota 1vl
le+0
VGG
ResNets
le-2 AlexNet
3.4-month doubling
le-4 Deep Belief Nets and
layer-wise pretraining
DQN
le-6
TD-Gammon v2.1
BiLSTM for Speech
1e-8 LeNet-5
NETtalk RNN for Speech
ALVINN
le-10
le-12 2-year doubling (Moore's Law)
1e-14 Perceptron & First Era Modern Era >
1960 1970 1980 1990 2000 2010 2020
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5.4 Parallel Stochastic Gradient Descent (PSGD)

In General (not always)
Parallel Stochastic Gradient Descent

v’ Larger batch size is faster
= For each GPU (in Parallel)

. . v" Smaller batch size more accurate
* Pickarandom data-point

* Compute the gradient v" Batch must fit into memory

*= Mix the Gradients v More nodes if GPU cannot handle size

average, ensembles, vector v" The weights’ mix cause some accuracy loss

Vepoch n, do:

summation, AdaSum, etc. ) )
| V batch i, do in parallel:

V GPU g, do: ®®[2\'31@|/"'181@

= Update the Weights for all

oL; /MPI_SUM\
A= 5 @Em O EE G)iE ()i
1
AL =E Z AL; * MPI allreduce MPI_Reduce

i=1:b +
MPI _Bcast

Wpt1 = Wu — VAL

https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce/ -
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5.5 Distributed Data Parallel

Let there be p processes /| GPUs with ranks r € {0,...,p — 1}. Each rank holds an
identical copy of the parameters w

Initialization (once). RANK 0 1nitializes w(o), then all ranks synchronize:

w < Beast (w(o)) .

. . .. t
ber-teration objective. At iteration ¢, each rank r draws a local mini-batch B = {(zrj, rj) o

(typically via a DistributedSampler so data are sharded across ranks). Define the

local loss
| b
E Z xfr’]a yr,])

and the global (effective) batch size B = pb with global loss

’B
H
g~

1 -1 b
7“ ZE 377“,]7 yr,y)

1
p r=0 r j=1

I
o

Gradient computation and synchronization. EaCh I”al’lk Computes ltS local gl”adient

g = v, 00 (w@) |
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then DDP synchronizes gradients with an all-reduce (sum) and averages:

1 e
7" = = AllReduceguy (gfﬁ) I O (w@)) |
P p r=0

Parameter update (done locally on every rank). A ft€r synchronization, every rank applies the same opti-

mizer step, e.g. SGD:
W = ) — g,

(With Adam /other optimizers: w!*Y = OptStep(w®, g).)

Note. 111 practice DDP performs the all-reduce bucket-wise during backprop to overlap
communication with computation, but mathematically it is the same g above.

Part 5: HPC for AI models / Section 5.5: Distributed Data Parallel / p.42 of 54



5.6 Trainind Deep Neural Networks on Distributed GPUs

30
64; 28.77 T® # train minutes | Speed- | % valid. | Accuracy
o GPUs | (10 epochs) Up | Accuracy Loss
’5 1 44.82 1.00 | 89.00 | 0.00%
7 2 24.07 1.86 89.14 0.16%
y=04356x+16929 | .~ 4 14.18 3.16 | 89.11 | 0.12%
20 R?=10.9905 10 8 7.76 5.78 88.90 -0.11%
N 4 16 4.42 10.14 | 88.46 | -0.61%
> ©-32; 16.46 32 2.72 16.46 | 88.69 -0.35%
[ i
w 15 K 64 1.56 28.77 | 86.40 | -2.92%
[ 16;10.14 L
LEy] #
10 \@ * image size: 512x512
8;5.78 * train batch size: 52 (per GPU)
. 4;3.16 #GPUs; #Speed-Up * learning rate: 1le-4
> @./25 1.86 * weight decay:1e-6
@;.%1;1.00
&)
0 https://www.meetup.com/PyData-
0 10 20 30 40 50 60 70 Cyprus/events/276154247/
it GPUS PyTorch + Horovod

Nikolaos Bakas et al. (2021). “Performance and scalability of deep learning models
trained on a hybrid supercomputer: Application in the prediction of the shear strength
of reinforced concrete slender beams without stirrups”. In: 8th International Confer-
ence on Computational Methods in Structural Dynamics and Earthquake Engineering.
COMPDYN 2021. URL: https://2021.compdyn.org/
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5.7 Hyperparameter Tuning of ML Algorithms

Figure 5.2 depicts the utilization of threads on a single node of the MeluXina super-
computer. We see that the node comprises 256 threads, the full utilization of which is

the aim.

Figure 5.2: Threads at MeluXina supercomputer https://docs.Ixp.lu/system/overview/

For each training, we use cross-validation
We train in parallel, one model per:

e 1 thread or ,
e “few” threads if the potential models are less than the available threads.

E.g. in Figure 5.3, 8 threads are utilized to train one deep learning model.
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For each training, we use cross-validation

[
[
[
[
L
[
[
[
[
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Figure 5.3: 8 threads utilized to train one deep learning model
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Table 5.1: Compute time for the Steel SSI & Fundamental period datasets

seconds seconds seconds total

Dataset Samples | Features fi t tune fn d tune ?nal train icon ds Threads
Steel ssi 98 308 6 57.51 361.45 21.16 440.12 256

Steel ssi 98 308 6 1,897.37 2,207.39 21.39 4,126.15 | 8

Fund. period | 10 000 6 14.33 27.37 1.62 43.32 256
Fund. period | 10 000 6 314.65 25160 1.63 567.88 8

Fund. period* | 10 000 6 45.84 64.07 2.25 112.16 256
Fund. period* | 10 000 6 1,260.14 2,742.67 1.63 4,004.44 | 8

Dewald Gravett et al. (2021). “New Fundamental Period Formulae for Soil-Reinforced
Concrete Structures Interaction using Machine Learning Algorithms And Anns”. In:
Soil Dynamics and Farthquake Engineering. URL: https:/ /www.sciencedirect.com /
science/article/pii/S0267726121000786

George Markou et al. (Jan. 2024). “A general framework of high-performance machine

learning algorithms: application in structural mechanics”. en. In: Computational
Mechanics. 1SSN: 0178-7675, 1432-0924. URL: https://link.springer.com /10.1007/
s00466-023-02386-9
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5.7.1 Scaling of XGBoost

Figure 5.4: X(GBoost compute times, for various datasets’ size. The experiments are repeated 5 times, and the computation
times have been averaged.

16.00
14.00
¢}
o
°®
12.00 e
)
©
o]
10.00 ®
o
= o ® 100_000x 10
= 800
9 ® @ 10 000x 10
® ® 10 000x 1_000
6.00
] ® 10 000 x 100
o
o ® ® @ 9o © ?
P J e
]
o0 ® ® 0 00 00 00 400
®© © 0 0 0 0 0 05 0 0 0 0 0

0 5 10 15 20
nthread

Part 5: HPC for Al models / Section 5.7: Hyperparameter Tuning of ML Algorithms / Subsection 5.7.1: Scaling of XGBoost / p.47 of 54



5.7.2 Scaling Results

Number of [Compute Time |Equivalent without |Equivalent without|Number of
Models (seconds) praellelism (seconds) |praellelism (hours) |Threads Scaling
1 15 15 0.004 8 1
100 45 1500 0.417 255 33.33
1000 140 15000 4.167 255| 107.14
10000 1105 150000 41.667 255| 135.75

A. M. v. d. Westhuizen, G. Markou. N. Bakas, and M. Papadrakakis, “Developing an artificial neural
network model that predicts the fundamental period of steel structures using a large dataset,” in
KEYNOTE Tualk: 9th International Conference on Computational Methods in Structural Dynamics
and Farthquake Engineering. COMPDYN 2023, Athens, Greece, 12-14 June 2023. [Online|. Available:
https://2023.compdyn.org/
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Part 6

Apply for Access at EuroHPC JU
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6.1 EuroHPC JU AI Factories Access Calls for Industrial Innovation

6.1.1 Playground Access

e Target: Industry (SMEs, startups),
new or entry-level users of HPC/AI Fac-
tories.

e Resources & duration: Small alloca-
tions on a single system for 1-3 months

for 5,000 GPU hours.

e Process: Permanently open, FIFO;
short application; eligibility + technical
check; access typically within 2 working
days.

6.1.2 Fast Lane Access

e Target: Industry users already familiar
with HPC.

e Resources & duration: Up to about
50,000 GPU hours on a single system,
for 1-3 months.

e Process: Permanently open, FIFO;
short proposal; eligibility + technical
check; access typically within 4 working
days.

6.1.3 Large Scale Access

e Target: Industry users with high-
impact Al projects needing > 50,000
GPU hours.

e Resources & duration: Very large al-
locations on a single system for 3, 6,
or 12 months, for More than 50,000
GPU hours.

e Process: Continuous call with frequent
cut-off dates; full proposal + techni-
cal and peer-review evaluation; decision
within about 10 working days after each
cut-off.

https:/ /www.eurohpc-ju.europa.eu/ai-factories/ai-factories-access-calls_en

Part 6: Apply for Access at EuroHPC JU / Section 6.1: EuroHPC JU Al Factories Access Calls for Industrial Innovation / Subsection 6.1.3: Large Scale Access

/1 EO ~fF 54


https://www.eurohpc-ju.europa.eu/ai-factories/ai-factories-access-calls_en

6.2 EuroHPC Al Factory Fast Lane call

6.2.1

The Project

e Project details

e Project title

e Project summary (abstract)

o Keywords

e Proposal for civilian purposes

e [s any part of the project confidential?

o Artificial Intelligence (Al) technology

e Al set of technologies selection

e Application Domain

e Project duration (1, 2, 3 months)

6.2.2

6.2.3
6.2.4

Project Lead and Organisation infor-
mation

Team Members Information

Al Factory selection

e Al Factory Selection

e Code(s) used
e Maximum number of GPUs
e Total storage required (GB)

e Total amount of data to transter

to/from (GB)

6.2.5 Code Details and Feasibility

e Code details

e Name and version of the code
e Webpage and other references
e Description of the code

e Scalability and performance

e Describe the scalability and perfor-
mance of the application

e ['xplain how the optimization work pro-
posed will contribute to future large
scale applications
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6.2.6 Ethics Self-Assessment

e How does your project ensure ethical
principles and addresses potential soci-
etal impacts associated with the devel-
opment and deployment of Al technolo-
oles

e How your system ensures that end-users
have the ability to control vital decisions
about their own lives

e Privacy & Data Governance

— Does your proposal involve handling
of personal data? (Yes/No)

— Please describe how data is collected
and processed from the aspect of law-
fulness, fairness and transparency

— What measures (such as anonymiza-
tion, pseudonymisation, encryption,
and aggregation) you took to safe-
guard the rights of data subjects?

— Please describe the measures you em-
ploy to prevent data breaches and
leakages

e [airness: How do you ensure avoiding
algorithmic bias, in input data, mod-
elling and algorithm design?

e Individual, and Social and Environmen-

tal Well-being

e Transparency: Are the end-users aware
that they are interacting with an Al sys-
tem? (Yes/No)

e How the participants and/or end-users
will be informed about interacting with
an Al system, and about its purpose, ca-
pabilities, limitations, benefits and risks

e Accountability: Please describe how
your system ensures that potential eth-
ically and socially undesirable effects
will be detected, stopped, and prevented
from reoccurring
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6.3 Frequently Asked Questions (FAQ)

Which organisations are eligible for access to EuroHPC machines?

Any European organisation is eligible for access to performfOpen Science researchjthe results of
the work are made available for open access). This includes public and private academic and
research institutions, public sector organisations, industrial enterprises and SMEs.

What is the cost?

Currently access isffree of charge. |

What are the participation conditions?

Participation conditions depend on the specific access call that a research group has applied. In
general users of EuroHPC systems commit to:

« acknowledge the use of the resources in their related publications,

« conftribute to dissemination events,
« produce and submit a report after completion of a resource allocation.

More information on participation conditions can be found in the call's Documents section.

https://eurohpc-ju.europa.eu/access-our-supercomputers/access-policy-and-faq _en

Part 6: Apply for Access at EuroHPC JU / Section 6.3: Frequently Asked Questions (FAQ) / p.53 of 54


https://eurohpc-ju.europa.eu/access-our-supercomputers/access-policy-and-faq_en

6.4 Resources

e EuroCC Sweden: How to apply for access to EuroHPC JU supercomputers https:
//www.youtube.com /watch?v=g5j0io006-E

e ENCCS (NCC Sweden): "How to use the PRACE-calls portal - Application to JU
supercomputers" Seminar https://www.youtube.com/watch?v=N1QqMh7HOmMQ

e NCC Greece: https://eurocc-greece.gr /how-to-apply-for-access-to-eurohpe-ju-supercom
e HPC wiki: https://hpc-wiki.info/hpe/HPC _Wiki
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