
High Performance Computing for AI models

Dr Nikos Bakas

December 18, 2025

/ p.2 of 54

Contents

1 General Concepts of High Performance Computing (HPC) 7
1.1 Definition of HPC . 7
1.2 The Advent of Clustering: Late 1990s and 2000s 8
1.3 Components of an HPC System . 9
1.4 CPUs, GPUs and Nodes . 9
1.5 Moore’s Law . 12
1.6 Sample Slurm Script . 14

2 Scaling 15
2.1 Why Parallelization Matters . 16
2.2 Speedup . 18
2.3 Parallelization Efficiency . 19
2.4 Floating Point Operations Per Second (FLOPS) 20

3 Programming Models in HPC 23
3

4 State of the art machines 25
4.1 The Top 500 list . 25

4.1.1 Exponential Growth . 27
4.2 Top 8 European Supercomputers . 28
4.3 ARIS - HPC Infrastructure in Greece 32
4.4 Daedalus - EuroHPC supercomputer in Greece 34

5 HPC for AI models 37
5.1 Big Data . 37
5.2 This is a small amount of books! . 38
5.3 AI and compute . 39
5.4 Parallel Stochastic Gradient Descent (PSGD) 40
5.5 Distributed Data Parallel . 41
5.6 Trainind Deep Neural Networks on Distributed GPUs 43
5.7 Hyperparameter Tuning of ML Algorithms 44

5.7.1 Scaling of XGBoost . 47
5.7.2 Scaling Results . 48

6 Apply for Access at EuroHPC JU 49
6.1 EuroHPC JU AI Factories Access Calls for Industrial Innovation 50

6.1.1 Playground Access . 50
6.1.2 Fast Lane Access . 50

Contents / p.4 of 54

6.1.3 Large Scale Access . 50
6.2 EuroHPC AI Factory Fast Lane call 51

6.2.1 The Project . 51
6.2.2 Project Lead and Organisation information 51
6.2.3 Team Members Information . 51
6.2.4 AI Factory selection . 51
6.2.5 Code Details and Feasibility . 51
6.2.6 Ethics Self-Assessment . 52

6.3 Frequently Asked Questions (FAQ) . 53
6.4 Resources . 54

Contents / p.5 of 54

Contents / p.6 of 54

Part 1

General Concepts of High Performance Computing (HPC)

1.1 Definition of HPC
High Performance Computing (HPC) refers to the practice of aggregating computing
power in a way that delivers much greater performance than one could get out of
a typical desktop computer or workstation in order to solve large problems in science,
engineering, and business.

Figure 1.1: ARIS - HPC Infrastructure in Greece https://www.hpc.grnet.gr/

HPC systems can process data and perform complex calculations at
extremely high speeds.

7

https://www.hpc.grnet.gr/

1.2 The Advent of Clustering: Late 1990s and 2000s

• The Beowulf Beowulf cluster, uses
inexpensive, commodity hardware
connected by a network.

• The first Beowulf cluster (1994) com-
prised 16 i486 DX4 processors and
reached 500 MFLOPS.

Taking an Intel Core i9 processor
with 10 cores, a conservative clock
speed of 3.0 GHz, and assuming it can
perform 16 FLOPS per cycle per core,
the theoretical peak performance would
be: 10 cores×3.0GHz×16 FLOP/cycle

core =
480 GFLOPS

Figure 1.2: The Borg, a 52-node Beowulf cluster used by the McGill University
pulsar group to search for pulsations from binary pulsars. Copyrighted free use,
https://commons.wikimedia.org/w/index.php?curid=119482

Part 1: General Concepts of High Performance Computing (HPC) / Section 1.2: The Advent of Clustering: Late 1990s and 2000s / p.8 of 54

https://commons.wikimedia.org/w/index.php?curid=119482

1.3 Components of an HPC System

An HPC system typically involves:

• Compute Nodes: These are the individual servers that provide the processing
power. Each node contains one or more CPUs (Central Processing Units) or GPUs
(Graphics Processing Units), and often both.

• Networking: A high-speed network interconnects the compute nodes, allowing for
rapid communication and data transfer between nodes.

• Storage: Fast, large-capacity storage systems are required for input/output (I/O)
operations, storing the data that is generated and used by applications running on
the HPC system.

• Software: This includes the operating systems, programming models, and applications
and tools specific to HPC tasks.

1.4 CPUs, GPUs and Nodes

• A cluster divided into CPU and GPU partitions

• A CPU node highlighted - multiple CPU nodes exist within the CPU partition.

• User’s allocation in the GPU partition is indicated, showing a combination of
RAM and GPU resources assigned to a user.

Part 1: General Concepts of High Performance Computing (HPC) / Section 1.4: CPUs, GPUs and Nodes / p.9 of 54

Part 1: General Concepts of High Performance Computing (HPC) / Section 1.4: CPUs, GPUs and Nodes / p.10 of 54

Threads on 1 node of MeluXina supercomputer
https://docs.lxp.lu/system/overview/

The screenshot was taken using the htop tool, which is a command-line utility for
monitoring Linux processes.

Part 1: General Concepts of High Performance Computing (HPC) / Section 1.4: CPUs, GPUs and Nodes / p.11 of 54

https://docs.lxp.lu/system/overview/

1.5 Moore’s Law

A transistor is a semiconductor device used to amplify or switch electronic signals and
electrical power. It is one of the basic building blocks of modern electronic devices. In
essence, transistors can be understood as a type of switch that controls the flow of
electricity in a circuit.

An integrated circuit (IC), sometimes called a microchip, is a semiconductor
wafer on which thousands or millions of tiny resistors, capacitors, and transistors are
fabricated. An integrated circuit can function as an amplifier, oscillator, timer, micro-
processor, or even computer memory.

Gordon E. Moore, a co-founder of the semiconductor company Intel, is the person
behind the formulation of Moore’s Law.

In 1965, Moore observed that the number of transistors on integrated
circuits had doubled every year since their invention and predicted that this
trend would continue into the foreseeable future.

A decade later, in 1975, based on the changing pace of technology, he revised his
projection, estimating a doubling approximately every two years.

Part 1: General Concepts of High Performance Computing (HPC) / Section 1.5: Moore’s Law / p.12 of 54

Hannah Ritchie and Max Roser, https://creativecommons.org/licenses/by/4.0
https://ourworldindata.org/uploads/2020/11/Transistor-Count-over-time.png

Part 1: General Concepts of High Performance Computing (HPC) / Section 1.5: Moore’s Law / p.13 of 54

1.6 Sample Slurm Script
Sample slurm script to allocate 4 nodes, with 2 * 64 cores each, with hyperthreading (2
threads per core). Check also https://slurm.schedmd.com/sbatch.html.

#!/bin/bash

#SBATCH --job-name=python_job # Descriptive job name
#SBATCH --nodes=4 # Request 4 compute nodes
#SBATCH --ntasks-per-node=64 # 64 tasks per node
#SBATCH --cpus-per-task=2 # Allocate 2 CPUs per task (for

hyperthreading)↪→

#SBATCH --time=04:00:00 # Set a job time limit of 4
hours↪→

#SBATCH --partition=highmem # Submit to a partition suitable
for your needs↪→

#SBATCH --mem=512GB # Example: Request 512GB memory
per node↪→

Load necessary modules
module load python/3.9 # Example: Load Python 3.9 module
Run your Python script
mpirun -np 256 python my_python_script.py

Part 1: General Concepts of High Performance Computing (HPC) / Section 1.6: Sample Slurm Script / p.14 of 54

https://slurm.schedmd.com/sbatch.html

Part 2

Scaling

15

2.1 Why Parallelization Matters

The following is an example code for the brightness increase of 1_000_000 Images:

using Base.Threads, Images

image_paths = ["image1.jpg", "image2.jpg", ...,
"image1_000_000.jpg"]↪→

brightness_increase = 50 # Define your brightness increase

@threads for path in image_paths
image = load_image(path) # Load the image
adjusted_image = clamp.(image .+ brightness_increase, 0,

255) # Adjust brightness↪→

save_image(adjusted_image, "adjusted_$path") # Save the
adjusted image↪→

end

Part 2: Scaling / Section 2.1: Why Parallelization Matters / p.16 of 54

The code comprises commands for:

• Parallelism: Distributes image processing across threads, making 1,000,000 images
as fast to process as one, assuming sufficient resources.

• Vectorized Computations: Modern processors use vectorized instructions (SIMD)
to operate on multiple data points simultaneously within a single instruction.

Computational Complexity: Turning an O(n) operation into an effective O(1)
operation (assuming perfect parallelization zero overhead).

• Perfect Parallelization is Impractical: Real-world scenarios often have depen-
dencies between loop iterations or require synchronization, making perfect paral-
lelization difficult to achieve.

• Overhead Always Exists (Almost): Even the most optimized systems have some
overhead associated with thread management. While it might be minimal, it’s not
truly zero.

Part 2: Scaling / Section 2.1: Why Parallelization Matters / p.17 of 54

2.2 Speedup

Speedup in the context of HPC is a metric used to quantify the performance improve-
ment of a parallel system compared to a serial one. It is typically expressed as:

Speedup =
Execution Time on Single Processor

Execution Time on Multiple Processors
An ideal speedup is linear, meaning the speedup is equal to the number of

processors. This, however, is rarely the case due to overheads inherent in parallel
systems.

Example:
Let’s say a computational task runs for 80 hours on a single processor. Running the

same task on a parallel system with 4 processors takes 22 hours. Thus, the speedup
is:

Speedup =
80
22
≈ 3.64 < 4

This represents a sub-linear speedup, indicating that there are likely some ineffi-
ciencies in the parallel processing.

Part 2: Scaling / Section 2.2: Speedup / p.18 of 54

2.3 Parallelization Efficiency

Parallelization efficiency, also known as parallel efficiency, is a measure of how effi-
ciently a computational task runs in parallel compared to serially. It is defined as the
ratio of the speedup achieved to the number of processors used:

Parallelization Efficiency =
Speedup

Number of Processors
Values of parallelization efficiency range from 0 (no benefit from parallelization) to

1 (perfect linear speedup). In reality, efficiencies are less than 1 due to overheads
like communication between processors, synchronization, and non-uniform
memory access delays.

Example:
If a task takes 100 hours to complete on a single processor and 15 hours to complete

on 8 processors, the speedup is:

Speedup =
100
15
≈ 6.67

The parallelization efficiency would be:

Parallelization Efficiency =
6.67
8
≈ 0.83

Here, an efficiency of 0.83 means the system is utilizing the parallel processors fairly
efficiently, but there is still some room for improvement.
Part 2: Scaling / Section 2.3: Parallelization Efficiency / p.19 of 54

2.4 Floating Point Operations Per Second (FLOPS)

There are several metrics to evaluate HPC performance:
FLOPS (Floating Point Operations Per Second): A measure of a computer’s

performance, especially in fields of scientific computations that require floating-point
calculations. Example: A supercomputer with 1 Peta FLOP can perform 1015 floating-
point operations per second.

Operations Name Abbreviation
1 FLOPS FLOPS
103 Kilo FLOPS KFLOPS
106 Mega FLOPS MFLOPS
109 Giga FLOPS GFLOPS
1012 Tera FLOPS TFLOPS
1015 Peta FLOPS PFLOPS
1018 Exa FLOPS EFLOPS

Table 2.1: Magnitudes of FLOPS (Floating Point Operations Per Second)

FLOPS are widely used to assess state-of-the-art Supercomputers.

Part 2: Scaling / Section 2.4: Floating Point Operations Per Second (FLOPS) / p.20 of 54

• This speed comparison highlights a snail (0.05 km/h) scaling up to the speed of a
rocket (10,000 km/h), increasing by 200,000 times.

• Similarly, the computational power comparison between a laptop (1 TFlop) and
an exascale supercomputer (1 EFlop) is even higher, being 1,000,000 times more
powerful.

Part 2: Scaling / Section 2.4: Floating Point Operations Per Second (FLOPS) / p.21 of 54

Part 2: Scaling / Section 2.4: Floating Point Operations Per Second (FLOPS) / p.22 of 54

Part 3

Programming Models in HPC

HPC applications are often developed using programming models that support paral-
lelism:

• OpenMP (Open Multi-Processing): An application programming interface
(API) that supports multi-platform shared-memory multiprocessing programming.

• MPI (Message Passing Interface): Used for programming parallel computers.
It involves processes sending and receiving messages to achieve parallelism.

• GPGPU (General-Purpose computing on Graphics Processing Units):
Utilizes GPUs to perform computation in applications traditionally handled by the
CPU.

These models come with their own set of libraries and compilers that are designed to
optimize performance by taking full advantage of the hardware capabilities present
within HPC environments.

23

Part 3: Programming Models in HPC / p.24 of 54

Part 4

State of the art machines

4.1 The Top 500 list

• The Top 500 list is a ranking of the world’s 500 most powerful non-distributed
computer systems. The list is compiled twice a year.

• Performance of the supercomputers on the Top 500 list is measured using the
LINPACK Benchmark. This benchmark tests the system’s ability to solve a
dense system of linear equations, providing a measure of the computer’s floating-
point rate of execution.

25

https://top500.org/ Nov. 18, 2024

Part 4: State of the art machines / Section 4.1: The Top 500 list / p.26 of 54

https://top500.org/

4.1.1 Exponential Growth

https://creativecommons.org/licenses/by-sa/3.0/

https://en.wikipedia.org/wiki/TOP500#/media/File:Supercomputers-history.svg

Part 4: State of the art machines / Section 4.2: Top 8 European Supercomputers / p.27 of 54

4.2 Top 8 European Supercomputers

The European High Performance Computing Joint Undertaking (EuroHPC JU) is a
joint initiative between the EU, European countries and private partners to develop
a World Class Supercomputing Ecosystem.
https://eurohpc-ju.europa.eu/index_en

1. LUMI (CSC, Finland)

• LUMI-C: 1536 nodes, 128 cores/node, 256-1024 GB RAM/node
• GPU: 2560 nodes, 64 cores/node, 4 GPUs, 128 GB GPU-RAM
• Visualization: 64 nodes, 1 GPU, 48 GB GPU-RAM
• Peak Performance: 550 petaflops
• URL: https://www.lumi-supercomputer.eu/lumis-full-system-architecture-revealed/

2. Leonardo (Cineca, Italy)

• Booster Module: 3456 nodes, 32 cores/node, 512 GB RAM/node, 4 GPUs, 64
GB GPU-RAM

• Data Centric Module: 1536 nodes, 112 cores/node, 512 GB RAM/node
• Peak Performance: 323.4 petaflops
• URL: https://leonardo-supercomputer.cineca.eu/hpc-system/

Part 4: State of the art machines / Section 4.2: Top 8 European Supercomputers / p.28 of 54

https://eurohpc-ju.europa.eu/index_en

3. MareNostrum 5 (Barcelona Supercomputing Center, Spain)

• General Purpose Partition: 6408 nodes, 112 cores/node, 256 GB RAM/node
• Accelerated Partition: 1120 nodes, 64 cores/node, 512 GB RAM/node, 4 GPUs,

64 GB GPU-RAM
• Peak Performance: 314 petaflops
• URL: https://www.bsc.es/innovation-and-services/marenostrum/marenostrum-5

4. MeluXina (LuxProvide, Luxembourg)

• Cluster: 573 nodes, 128 cores/node, 512 GB RAM/node
• Accelerator-GPU: 200 nodes, 64 cores/node, 512 GB RAM/node, 4 GPUs, 40 GB

GPU-RAM
• Large memory: 20 nodes, 128 cores/node, 4096 GB RAM/node
• Peak Performance: 18.29 petaflops
• URL: https://docs.lxp.lu/system/overview/

5. Karolina (IT4I, Czech Republic)

• CPU: 828 nodes, 128 cores/node, 256-24000 GB RAM/node
• GPU: 72 nodes, 8 GPUs, 40 GB GPU-RAM
• Peak Performance: 15.69 petaflops
• URL: https://www.it4i.cz/en/infrastructure/karolina

Part 4: State of the art machines / Section 4.2: Top 8 European Supercomputers / p.29 of 54

6. Vega (IZUM, Slovenia)

• GPU partition: 60 nodes, 128 cores/node, 512 GB RAM/node, 4 GPUs, 40 GB
GPU-RAM

• CPU node Standard: 768 nodes, 128 cores/node, 256 GB RAM/node
• CPU node Large Memory: 192 nodes, 128 cores/node, 1000 GB RAM/node
• Peak Performance: 10.05 petaflops
• URL: https://doc.vega.izum.si/architecture/

7. Deucalion (Guimarães, Portugal)

• ARM cluster: 1632 nodes, 48 cores/node
• X86 cluster: 500 nodes, 48+ cores/node
• Accelerated partition: 33 nodes
• Peak Performance: 10 petaflops
• URL: https://macc.fccn.pt/resources#deucalion

8. Discoverer (Sofia Tech Park, Bulgaria)

• CPU: 1128 nodes, 128 cores/node, 256 GB RAM/node
• CPU-Fat: 18 nodes, 128 cores/node, 1000 GB RAM/node
• Peak Performance: 5.94 petaflops
• URL: https://docs.discoverer.bg/resource_overview.html

Part 4: State of the art machines / Section 4.3: ARIS - HPC Infrastructure in Greece / p.30 of 54

Part 4: State of the art machines / Section 4.3: ARIS - HPC Infrastructure in Greece / p.31 of 54

4.3 ARIS - HPC Infrastructure in Greece

Compute Nodes

Table 4.1: Nodes Summary

Node Type Count Accelerator Memory Cores
THIN nodes 48 w/o 512 GB 128@2.45 GHz 1

GPU nodes 3 4 x 80GB2 512 GB 128@2.45 GHz
FAT nodes 16 w/o 1024 GB 128@2.45 GHz 1

https://doc25.aris.grnet.gr/system/
hardware/

Figure 4.1: ARIS - HPC Infrastructure in Greece

1two sockets
2NVIDIA Ampere A100

Part 4: State of the art machines / Section 4.3: ARIS - HPC Infrastructure in Greece / p.32 of 54

https://doc25.aris.grnet.gr/system/hardware/
https://doc25.aris.grnet.gr/system/hardware/

Table 4.2: GPU Nodes Technical Information

Architecture x86-64
System Dell PowerEdge XE8545
Total number of nodes 3
Total number of cores 384
Total number of GPUs 12
Total amount of RAM [TByte] 1.5
Total Linpack Performance [TFlop/s] 240
Components
Processor Type AMD EPYC 7763
Nominal Frequency [GHz] 2.45
Processors per Node 2
Cores per Processor 64
Cores per Node 128
Hyperthreading OFF
Accelerators
Accelerator type GPU – NVIDIA Ampere A100
Accelerators per node 4
Accelerator memory [GByte] 80
Memory
Memory per Node [GByte] 512

Figure 4.2: ARIS - HPC Infrastructure in Greece

https://www.hpc.grnet.gr/

Part 4: State of the art machines / Section 4.4: Daedalus - EuroHPC supercomputer in Greece / p.33 of 54

https://www.hpc.grnet.gr/

4.4 Daedalus - EuroHPC supercomputer in Greece

The way is open to building a EuroHPC world-class supercomputer in Greece

A hosting agreement has been signed between the EuroHPC Joint Undertaking and
the National Infrastructures for Research and Technology (GRNET) in Greece, where
DAEDALUS, a new EuroHPC supercomputer, will be located.

Part 4: State of the art machines / Section 4.4: Daedalus - EuroHPC supercomputer in Greece / p.34 of 54

• Total sustained performance (Rmax): 89,2Petaflops.

• Expected to be listed within the top 30 positions on the TOP500 list and top 7
among the EuroHPC JU systems.

• 11PB storage (10PB HDD capacity + 1PB NVMe Flash performance)

• Lavrion Technological and Cultural Park (TCPL) https://eurohpc-ju.europa.eu/
way-open-building-eurohpc-world-class-supercomputer-greece-2022-11-28_en

• June 11, 2024: GRNET S.A. conducts a Public Consultation on
the Open Tender Announcement Issue https://grnet.gr/2024/06/11/
public-consultation-lavrio-daedalus/

Part 4: State of the art machines / Section 4.4: Daedalus - EuroHPC supercomputer in Greece / p.35 of 54

https://eurohpc-ju.europa.eu/way-open-building-eurohpc-world-class-supercomputer-greece-2022-11-28_en
https://eurohpc-ju.europa.eu/way-open-building-eurohpc-world-class-supercomputer-greece-2022-11-28_en
https://grnet.gr/2024/06/11/public-consultation-lavrio-daedalus/
https://grnet.gr/2024/06/11/public-consultation-lavrio-daedalus/

Part 4: State of the art machines / Section 4.4: Daedalus - EuroHPC supercomputer in Greece / p.36 of 54

Part 5

HPC for AI models

5.1 Big Data

Large language models can be trained on datasets containing trillions of words,
which translates to roughly tens of trillions of tokens.

• 100 tokens are approximately equal to 75 words. Tokens can be a whole
word, but they can also be smaller parts of words or even punctuation marks.

• Wikipedia comprises approximately 3 billion tokens.

• The British Library has around 14 million books. Assuming an average book
has 50,000 tokens (words x 1.3 tokens/word), we get a very rough estimate of 700
billion tokens (14 million books * 50,000 tokens/book). The stacks already exceed
∼750 km of shelving and grow by another 9.6 km every year.

37

5.2 This is a small amount of books!

Figure 5.1: Library shelves generated with https://chat.openai.com/

Part 5: HPC for AI models / Section 5.2: This is a small amount of books! / p.38 of 54

5.3 AI and compute

Since 2102 we observe a 3.4-month doubling in computing power used to train AI
models. https://openai.com/research/ai-and-compute. Petaflops are 1015 FLOPS.

Part 5: HPC for AI models / Section 5.3: AI and compute / p.39 of 54

https://openai.com/research/ai-and-compute

5.4 Parallel Stochastic Gradient Descent (PSGD)

Part 5: HPC for AI models / Section 5.4: Parallel Stochastic Gradient Descent (PSGD) / p.40 of 54

5.5 Distributed Data Parallel

Let there be p processes / GPUs with ranks r ∈ {0, . . . , p − 1}. Each rank holds an
identical copy of the parameters w.

Initialization (once). Rank 0 initializes w(0), then all ranks synchronize:

w(0) ← Bcast
(
w(0)

)
.

Per-iteration objective. At iteration t, each rank r draws a local mini-batch B
(t)
r = {(xr,j, yr,j)}bj=1

(typically via a DistributedSampler so data are sharded across ranks). Define the
local loss

ℓ(t)r (w) =
1

b

b∑
j=1

ℓ(f (xr,j;w), yr,j) ,

and the global (effective) batch size B = pb with global loss

ℓ(t)(w) =
1

p

p−1∑
r=0

ℓ(t)r (w) =
1

B

p−1∑
r=0

b∑
j=1

ℓ(f (xr,j;w), yr,j) .

Gradient computation and synchronization. Each rank computes its local gradient

g(t)r = ∇wℓ
(t)
r

(
w(t)

)
,

Part 5: HPC for AI models / Section 5.5: Distributed Data Parallel / p.41 of 54

then DDP synchronizes gradients with an all-reduce (sum) and averages:

ḡ(t) =
1

p
AllReducesum

(
g(t)r

)
=

1

p

p−1∑
r=0

g(t)r = ∇wℓ
(t)
(
w(t)

)
.

Parameter update (done locally on every rank). After synchronization, every rank applies the same opti-
mizer step, e.g. SGD:

w(t+1) = w(t) − η ḡ(t).

(With Adam/other optimizers: w(t+1) = OptStep(w(t), ḡ(t)).)

Note. In practice DDP performs the all-reduce bucket-wise during backprop to overlap
communication with computation, but mathematically it is the same ḡ(t) above.

Part 5: HPC for AI models / Section 5.5: Distributed Data Parallel / p.42 of 54

5.6 Trainind Deep Neural Networks on Distributed GPUs

Nikolaos Bakas et al. (2021). “Performance and scalability of deep learning models
trained on a hybrid supercomputer: Application in the prediction of the shear strength
of reinforced concrete slender beams without stirrups”. In: 8th International Confer-
ence on Computational Methods in Structural Dynamics and Earthquake Engineering.
COMPDYN 2021. url: https://2021.compdyn.org/
Part 5: HPC for AI models / Section 5.6: Trainind Deep Neural Networks on Distributed GPUs / p.43 of 54

https://2021.compdyn.org/

5.7 Hyperparameter Tuning of ML Algorithms

Figure 5.2 depicts the utilization of threads on a single node of the MeluXina super-
computer. We see that the node comprises 256 threads, the full utilization of which is
the aim.

Figure 5.2: Threads at MeluXina supercomputer https://docs.lxp.lu/system/overview/

For each training, we use cross-validation
We train in parallel, one model per:

• 1 thread or ,

• “few” threads if the potential models are less than the available threads.

E.g. in Figure 5.3, 8 threads are utilized to train one deep learning model.
Part 5: HPC for AI models / Section 5.7: Hyperparameter Tuning of ML Algorithms / p.44 of 54

https://docs.lxp.lu/system/overview/

For each training, we use cross-validation

Figure 5.3: 8 threads utilized to train one deep learning model

Part 5: HPC for AI models / Section 5.7: Hyperparameter Tuning of ML Algorithms / p.45 of 54

Table 5.1: Compute time for the Steel SSI & Fundamental period datasets

Dataset Samples Features
seconds
1st tune

seconds
2nd tune

#seconds
final train

total
seconds

Threads

Steel ssi 98 308 6 57.51 361.45 21.16 440.12 256
Steel ssi 98 308 6 1,897.37 2,207.39 21.39 4,126.15 8
Fund. period 10 000 6 14.33 27.37 1.62 43.32 256
Fund. period 10 000 6 314.65 25160 1.63 567.88 8
Fund. period* 10 000 6 45.84 64.07 2.25 112.16 256
Fund. period* 10 000 6 1,260.14 2,742.67 1.63 4,004.44 8

Dewald Gravett et al. (2021). “New Fundamental Period Formulae for Soil-Reinforced
Concrete Structures Interaction using Machine Learning Algorithms And Anns”. In:
Soil Dynamics and Earthquake Engineering. url: https://www.sciencedirect.com/
science/article/pii/S0267726121000786

George Markou et al. (Jan. 2024). “A general framework of high-performance machine
learning algorithms: application in structural mechanics”. en. In: Computational
Mechanics. issn: 0178-7675, 1432-0924. url: https://link.springer.com/10.1007/
s00466-023-02386-9

Part 5: HPC for AI models / Section 5.7: Hyperparameter Tuning of ML Algorithms / p.46 of 54

https://www.sciencedirect.com/science/article/pii/S0267726121000786
https://www.sciencedirect.com/science/article/pii/S0267726121000786
https://link.springer.com/10.1007/s00466-023-02386-9
https://link.springer.com/10.1007/s00466-023-02386-9

5.7.1 Scaling of XGBoost

Figure 5.4: XGBoost compute times, for various datasets’ size. The experiments are repeated 5 times, and the computation
times have been averaged.

Part 5: HPC for AI models / Section 5.7: Hyperparameter Tuning of ML Algorithms / Subsection 5.7.1: Scaling of XGBoost / p.47 of 54

5.7.2 Scaling Results

Part 5: HPC for AI models / Section 5.7: Hyperparameter Tuning of ML Algorithms / Subsection 5.7.2: Scaling Results / p.48 of 54

Part 6

Apply for Access at EuroHPC JU

49

6.1 EuroHPC JU AI Factories Access Calls for Industrial Innovation

6.1.1 Playground Access

• Target: Industry (SMEs, startups),
new or entry-level users of HPC/AI Fac-
tories.

• Resources & duration: Small alloca-
tions on a single system for 1-3 months
for 5,000 GPU hours.

• Process: Permanently open, FIFO;
short application; eligibility + technical
check; access typically within 2 working
days.

6.1.2 Fast Lane Access

• Target: Industry users already familiar
with HPC.

• Resources & duration: Up to about
50,000 GPU hours on a single system,
for 1-3 months.

• Process: Permanently open, FIFO;
short proposal; eligibility + technical
check; access typically within 4 working
days.

6.1.3 Large Scale Access

• Target: Industry users with high-
impact AI projects needing > 50,000
GPU hours.

• Resources & duration: Very large al-
locations on a single system for 3, 6,
or 12 months, for More than 50,000
GPU hours.

• Process: Continuous call with frequent
cut-off dates; full proposal + techni-
cal and peer-review evaluation; decision
within about 10 working days after each
cut-off.

https://www.eurohpc-ju.europa.eu/ai-factories/ai-factories-access-calls_en

Part 6: Apply for Access at EuroHPC JU / Section 6.1: EuroHPC JU AI Factories Access Calls for Industrial Innovation / Subsection 6.1.3: Large Scale Access
/ p.50 of 54

https://www.eurohpc-ju.europa.eu/ai-factories/ai-factories-access-calls_en

6.2 EuroHPC AI Factory Fast Lane call

6.2.1 The Project

• Project details
• Project title
• Project summary (abstract)
• Keywords
• Proposal for civilian purposes
• Is any part of the project confidential?
• Artificial Intelligence (AI) technology
• AI set of technologies selection
• Application Domain
• Project duration (1, 2, 3 months)

6.2.2 Project Lead and Organisation infor-
mation

6.2.3 Team Members Information

6.2.4 AI Factory selection

• AI Factory Selection

• Code(s) used

• Maximum number of GPUs

• Total storage required (GB)

• Total amount of data to transfer
to/from (GB)

6.2.5 Code Details and Feasibility

• Code details

• Name and version of the code

• Webpage and other references

• Description of the code

• Scalability and performance

• Describe the scalability and perfor-
mance of the application

• Explain how the optimization work pro-
posed will contribute to future large
scale applications

Part 6: Apply for Access at EuroHPC JU / Section 6.2: EuroHPC AI Factory Fast Lane call / Subsection 6.2.6: Ethics Self-Assessment / p.51 of 54

6.2.6 Ethics Self-Assessment

• How does your project ensure ethical
principles and addresses potential soci-
etal impacts associated with the devel-
opment and deployment of AI technolo-
gies

• How your system ensures that end-users
have the ability to control vital decisions
about their own lives

• Privacy & Data Governance

– Does your proposal involve handling
of personal data? (Yes/No)

– Please describe how data is collected
and processed from the aspect of law-
fulness, fairness and transparency

– What measures (such as anonymiza-
tion, pseudonymisation, encryption,
and aggregation) you took to safe-
guard the rights of data subjects?

– Please describe the measures you em-
ploy to prevent data breaches and
leakages

• Fairness: How do you ensure avoiding
algorithmic bias, in input data, mod-
elling and algorithm design?

• Individual, and Social and Environmen-
tal Well-being

• Transparency: Are the end-users aware
that they are interacting with an AI sys-
tem? (Yes/No)

• How the participants and/or end-users
will be informed about interacting with
an AI system, and about its purpose, ca-
pabilities, limitations, benefits and risks

• Accountability: Please describe how
your system ensures that potential eth-
ically and socially undesirable effects
will be detected, stopped, and prevented
from reoccurring

Part 6: Apply for Access at EuroHPC JU / Section 6.2: EuroHPC AI Factory Fast Lane call / Subsection 6.2.6: Ethics Self-Assessment / p.52 of 54

6.3 Frequently Asked Questions (FAQ)

https://eurohpc-ju.europa.eu/access-our-supercomputers/access-policy-and-faq_en

Part 6: Apply for Access at EuroHPC JU / Section 6.3: Frequently Asked Questions (FAQ) / p.53 of 54

https://eurohpc-ju.europa.eu/access-our-supercomputers/access-policy-and-faq_en

6.4 Resources

• EuroCC Sweden: How to apply for access to EuroHPC JU supercomputers https:
//www.youtube.com/watch?v=g5jOio006-E

• ENCCS (NCC Sweden): "How to use the PRACE-calls portal - Application to JU
supercomputers" Seminar https://www.youtube.com/watch?v=N1QqMh7HOmQ

• NCC Greece: https://eurocc-greece.gr/how-to-apply-for-access-to-eurohpc-ju-supercomputers/

• HPC wiki: https://hpc-wiki.info/hpc/HPC_Wiki

Part 6: Apply for Access at EuroHPC JU / Section 6.4: Resources / p.54 of 54

https://www.youtube.com/watch?v=g5jOio006-E
https://www.youtube.com/watch?v=g5jOio006-E
https://www.youtube.com/watch?v=N1QqMh7HOmQ
https://eurocc-greece.gr/how-to-apply-for-access-to-eurohpc-ju-supercomputers/
https://hpc-wiki.info/hpc/HPC_Wiki

	General Concepts of High Performance Computing (HPC)
	Definition of HPC
	The Advent of Clustering: Late 1990s and 2000s
	Components of an HPC System
	CPUs, GPUs and Nodes
	Moore's Law
	Sample Slurm Script

	Scaling
	Why Parallelization Matters
	Speedup
	Parallelization Efficiency
	Floating Point Operations Per Second (FLOPS)

	Programming Models in HPC
	State of the art machines
	The Top 500 list
	Exponential Growth

	Top 8 European Supercomputers
	ARIS - HPC Infrastructure in Greece
	Daedalus - EuroHPC supercomputer in Greece

	HPC for AI models
	Big Data
	This is a small amount of books!
	AI and compute
	Parallel Stochastic Gradient Descent (PSGD)
	Distributed Data Parallel
	Trainind Deep Neural Networks on Distributed GPUs
	Hyperparameter Tuning of ML Algorithms
	Scaling of XGBoost
	Scaling Results

	Apply for Access at EuroHPC JU
	EuroHPC JU AI Factories Access Calls for Industrial Innovation
	Playground Access
	Fast Lane Access
	Large Scale Access

	EuroHPC AI Factory Fast Lane call
	The Project
	Project Lead and Organisation information
	Team Members Information
	AI Factory selection
	Code Details and Feasibility
	Ethics Self-Assessment

	Frequently Asked Questions (FAQ)
	Resources

