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Part 1

Scaling LLMs



1.1 GPU Monitoring Stack

1.1.1 NVML (NVIDIA Management Library)

e Definition: C API for monitoring and managing NVIDIA GPU state (utilization,
memory, temperature, power, clocks, ECC, etc.); it is also the underlying library
used by nvidia-smi.

o Links:

— https://developer.nvidia.com /management-library-nvml
— https://docs.nvidia.com/deploy /nvml-api/

e Developed by: NVIDIA.

o Methods (API):

—nvmlInit — initialize NVML (must be called before queries).
—nvmlShutdown — shut down NVML when finished.
—nvmlDeviceGetHandleByIndex — get a handle to a specific GPU (by index).

—nvmlDeviceGetUtilizationRates — get GPU and memory-controller utiliza-
tion (% over the sample window).

—nvmlDeviceGetMemoryInfo — get total/free/used GPU memory.

—nvmlDeviceGetTemperature — get current GPU temperature (e.g., core tem-
perature).

—nvmlDeviceGetPowerUsage — get current power draw (typically in milliwatts).
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1.1.2 nvidia-smi (NVIDIA System Management Interface)

o Definition: A command-line tool (built on NVML) to monitor/query and (with priv-
ileges) manage NVIDIA GPUs; supports machine-readable output (e.g., CSV/XML)
for scripting.

o Links:

— https://developer.nvidia.com /system-management-interface
— https://docs.nvidia.com /deploy /nvidia-smi/

e Developed by: NVIDIA.

o CLI Commands:

—nvidia-smi -query-gpu=<fields> -format=csv,noheader -— query spe-
cific metrics (e.g., utilization.gpu, utilization.memory, memory.used,
memory.total, temperature.gpu, power.draw) in script-friendly CSV.

—nvidia-smi -i <gpu> ... — select which GPU to query (useful on multi-GPU
systems).

—nvidia-smi -1 <seconds> ... /nvidia-smi -loop-ms <ms> ... — repeat
queries at a fixed interval to log utilization/memory/temperature/power over
time.

—nvidia-smi -f <logfile> ... — write the output to a log file.

—nvidia-smi dmon — live per-GPU monitoring including utilization, memory ac-
tivity /usage, temperature, and power (depending on support).
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1.1.3 CUDA (Compute Unified Device Architecture)

o Definition: NVIDIA’s GPU computing platform + APIs (runtime + driver) that
let software allocate GPU memory, launch kernels, and manage devices/streams to
run general-purpose computation on NVIDIA GPUs.

o Links:
— https://docs.nvidia.com/cuda/

— https://docs.nvidia.com /cuda/cuda-runtime-api/index.html

— https://docs.nvidia.com /cuda/cuda-programming-guide /0 1-introduction/
cuda-platform.html

e Developed by: NVIDIA.
o Methods (API):

— cudaMemGetInfo — query global free and total device memory (bytes).

— cudaGetDeviceProperties — get device properties including total global mem-
ory (totalGlobalMem).

— cudaMalloc / cudaFree — allocate/free memory on the GPU (device RAM).

— cudaMemcpy — copy data between host RAM and GPU RAM (or device-to-
device).
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1.1.4 torch.cuda (PyTorch CUDA package)

o Definition: PyTorch’s CUDA interface for allocating CUDA tensors and running
GPU ops; also exposes some monitoring helpers (some are reported “as given by
nvidia-smi”).

o Link: https://docs.pytorch.org/docs/stable/cuda.html

e Developed by: The PyTorch open-source project (PyTorch Foundation under the
Linux Foundation).

e NMethods you can use:

—torch.cuda.memory_allocated — bytes of GPU memory currently allocated
by PyTorch (this process).

—torch.cuda.max_memory_allocated — peak allocated GPU memory by Py-
Torch (this process).

—torch.cuda.reset_peak_memory_stats — reset PyTorch peak-memory statis-
tics.

—torch.cuda.memory.mem_get_info — global free/total GPU memory (bytes)
from CUDA (cudaMemGetInfo).

—torch.cuda.utilization — GPU utilization (% over a sampling window), re-
ported “as given by nvidia-smi”.

— torch. cuda.memory_usage — memory-controller utilization (% over a sampling
window), reported “as given by nvidia-smi”.
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—torch.cuda.temperature — GPU temperature (average over the past sample
period), reported “as given by nvidia-smi”.
—torch.cuda.power_draw — GPU power draw (average over the past sample
period), reported “as given by nvidia-smi”.
e torch.cuda vs NVML:
— PyTorch’s core torch.cuda is not NVML-based. The stuff that makes tensors
run on the GPU uses CUDA (driver/runtime), not NVML.

— Some torch.cuda info is explicitly CUDA-API-based, not NVML. For example
torch.cuda.memory.mem_get_info uses cudaMemGetInfo.

— But some PyTorch monitoring helpers are effectively NVML-based. Example:

torch.cuda.utilization() is documented as returning utilization “as given by
nvidia-smi” (which is NVML-backed)
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1.1.5 nvidia-ml-py (official NVML Python bindings distribution)

e Definition: The Python package distribution that wraps the NVML library and
provides the pynvml module for GPU management/monitoring from Python (i.e.,
you pip install nvidia-ml-py but you import pynvml). The separate pynvml
(https:/ /pypi.org/project/pynvml/) PyPI project is deprecated and provides unof-
ficial utilities.

e Link: https://pypi.org/project/nvidia-ml-py/

o Developed by: NVIDIA.

o Methods you can use:

—pynvml.nvmlInit () — initialize NVML (must be called before queries).
— pynvml .nvmlDeviceGetHandleByIndex () — select a GPU (by index) to query.
— pynvml .nvmlDeviceGetMemoryInfo () — get total/free/used GPU memory.

—pynvml .nvmlDeviceGetUtilizationRates () — get GPU and memory-controller
utilization (% over a sampling window).

— pynvml .nvmlDeviceGetTemperature() — get current GPU temperature (e.g.,
core temperature).

— pynvml .nvmlDeviceGetPowerUsage () — get current GPU power draw (typi-
cally in milliwatts).
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1.1.6 How software measures “hardware” telemetry (utilization, memory, temperature,
power /energy)

The GPU has a built-in controller (a tiny processor in the GPU hardware) that
runs firmware (small software inside the GPU). That controller and the GPU
hardware provide telemetry such as temperature (typically from on-chip sensors),
power (from board power monitoring / telemetry), and activity counters.

The NVIDIA kernel driver (privileged software in the operating system) talks to
the GPU, collects these readings (often as averages over a short sampling window),
and exposes them to normal programs through standard interfaces such as NVML
(and tools built on it, like nvidia-smi). Some memory info can also come from
CUDA runtime queries (e.g., global free/total memory).
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GPU Utilization and Memory Usage
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GPU Utilization - job=0, rank=0, gpu=0
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2.2 Task 16 - Model=meta-Llama-3.2-3B-Instruct
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GPU Utilization - job=16, rank=3, gpu=3
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Part 3

Scalability Plots

3.1 Indiccative Plots
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3.1.1 Efficiency vs Batch Size

Parallel efficiency vs GPUs (BatchSize, MaxLen=32, NumEpochs=4)
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3.1.2 Efficiency vs Max Length

Parallel efficiency vs GPUs (MaxLen, BatchSize=16, NumEpochs=4)
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3.1.3

speedup vs Batch size

Speedup vs GPUs (BatchSize, MaxLen=32, NumEpochs=4)
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3.1.4 speedup vs Max Length

Speedup vs GPUs (MaxLen, BatchSize=16, NumEpochs=4)
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3.2 Aggregated Plots
3.2.1 Efficiency Distributions

Parallel efficiency vs GPUs (all runs)
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3.2.2 Speedup Distributions

Speedup vs GPUs (all runs)

I
359 ———-= 259 guantile
—— median
—-—- 75% quantile
504 o 1GPUbaseline d

2.5 A

Speedup

2.0 A

1.5 1

1.0

Number of GPUs

Part 3: Scalability Plots / Section 3.2: Aggregated Plots / Subsection 3.2.2: Speedup Distributions / p.28 of 61



29



Part 4

Statistical Analysis

4.1 Correlations

4.1.1 All by All Correlation Matrix
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4.1.2 All by All Relationships Top

Variable- Variable-
i j Value Metric
NVML-Aveg-Mem-Used-MB | Model-Llama-3.2-3B-Instruct | 1.00e+00 | F1Score
TORCH-Avg-Mem-Used-MB | Model-lama-3.2-1B-Instruct | 1.00e+00| F1Score
SMI-Avg-Mem-Used-MB Model-lama-3.2-1B-Instruct | 1.00e4+00 | F1Score
SMI-Avg-Mem-Used-MB | Model-Llama-3.2-3B-Instruct | 1.00e+00 | Fl1Score
NVML-Avg-Mem-Used-MB | Model-lama-3.2-1B-Instruct | 1.00e+00| F1Score
TORCH-Avg-Mem-Used-MB | Model-Llama-3.2-3B-Instruct | 1.00e+00 | F1Score
NVML-Aveg-Mem-Used-MB | TORCH-Avg-Mem-Used-MB | 1.00e+00 | Pearson R
NVML-Ave-GPU-Temp-C | TORCH-Avg-GPU-Temp-C | 1.00e+00 | Pearson R
NVML-Ave-GPU-Util TORCH-Avg-GPU-Util 1.00e+00 | Pearson R
NVML-Avg-Mem-Util TORCH-Avg-Mem-Util 1.00e+00 | Pearson R
NVML-Avg-GPU-Power-W | TORCH-Avg-GPU-Power-W | 1.00e+00 | Pearson R
Train-Loss Validation-Loss 9.89e-01 | Pearson R
NVML-Aveg-Mem-Used-MB SMI-Avg-Mem-Used-MB 9.56e-01 | Pearson R
TORCH-Avg-Mem-Used-MB |  SMI-Avg-Mem-Used-MB 9.56e-01 | Pearson R
TORCH-Avg-GPU-Power-W | TORCH-Avg-GPU-Temp-C | 9.54e-01 | Pearson R

Truncated Table. Total rows = 210.
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4.2 Descriptive Statistics (Train Set)

Variables mean median std min max skewness | kurtosis
Batch-Size 8.22e+00 | 8.00e+00 | 5.95e+00 | 1.00e+00 | 1.60e+01 | 1.15e-01 | -1.40e+00
Max-Length 2.43e+01 | 3.20e+01 | 7.99¢+00 | 1.60e+01 | 3.20e+01 | -7.41e-02 | -1.99e+00
Num-Epochs 2.31e+00 | 2.00e+00 | 1.23e+00 | 1.00e+00 | 4.00e+00 | 4.24e-01 | -1.44e+00
Num-GPUs 2.36e+00 | 2.00e+00 | 1.26e+00 | 1.00e+00 | 4.00e+00 | 3.40e-01 | -1.55e+00
Train-Loss 2.02e+00 | 1.89e+00 | 6.23e-01 | 1.11e+00 | 3.70e+00 | 5.99e-01 | -4.50e-01
NVML-Ave-GPU-Util 4 87e+01 | 5.21e+01 | 1.08e+01 | 2.09e+01 | 6.50e+01 | -8.51e-01 | 1.48e-01
NVML-Avg-Mem-Util 3.08e+01 | 3.27e+01 | 8.31e+00 | 1.12e+01 | 4.35e+01 | -6.00e-01 | -2.47e-01
NVML-Avg-Mem-Used-MB | 2.73e+04 | 3.30e+04 | 1.11e+04 | 1.38e+04 | 4.04e+04 | 4.28e-02 | -1.84e+00
NVML-Avg-GPU-Power-W | 1.51e4+02 | 1.49¢+02 | 2.52e+01 | 9.71e+01 | 2.24e+02 | 3.80e-01 | 4.77¢-01
NVML-Ave-GPU-Temp-C | 4.52e+01 | 4.50e+01 | 1.98e+00 | 4.05e+01 | 5.14e+01 | 5.46e-01 | 7.36e-01
TORCH-Ave-GPU-Util 4.87e+01 | 5.21e+01 | 1.08e+01 | 2.09e+01 | 6.50e+01 | -8.50e-01 | 1.46e-01
TORCH-Avg-Mem-Util 3.08e+01 | 3.27e+01 | 8.31e+00 | 1.12e+01 | 4.35e+01 | -6.00e-01 | -2.46e-01
TORCH-Avg-Mem-Used-MB | 2.67e+04 | 3.25e+04 | 1.11e+04 | 1.33e+04 | 3.99e+04 | 4.27e-02 | -1.84e+00
TORCH-Avg-GPU-Power-W | 1.51e+02 | 1.49e+02 | 2.52e+01 | 9.71e+01 | 2.24e+02 | 3.80e-01 | 4.80e-01
TORCH-Aveg-GPU-Temp-C | 4.52e+01 | 4.50e+01 | 1.98e+00 | 4.05e+01 | 5.14e+01 | 5.46e-01 | 7.35e-01

Truncated Table. Total rows = 21.
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4.3 Model Llama 3.2 3B Instruct vs TORCH Avg Mem Used MB

Frequency Distribution in 20 bins, and Cumulative Distribution Function
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Figure 4.1: n? = 0.95080 for Model Llama 3.2 3B Instruct vs TORCH Avg Mem Used MB
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4.4 NVML vs TORCH measurements
4.4.1 NVML Avg GPU Temperature vs TORCH Avg GPU Temperature

Pearson Correlation=1.00000, R-Squared=1.00000, TORCH-Avg-GPU-Temp-C=1.00(NVM

®  Given Data Points of NVML-A&vg-GPU-Temp-C vs TORCH-Avg-GPU-Temp-C
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4.4.2 NVML Avg Mem Used MB vs TORCH Avg Mem Used MB

Pearson Correlation=1.00000, R-Squared=1.00000, TORCH-Avg-Mem-Used-MB=1.00(N\

®  Given Data Points of NVML-Avg-Mem-Used-MB vs TORCH-Avg-Mem-Used-MB
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4.5 Hyperparameters vs Validation Loss

4.5.1 Train Time vs Validation Loss

Pearson Correlation=-0.51239, R-Squared=0.26254, Validation-Loss=-0.00(Train-Time)A

®  Given Data Points of Train-Time vs Validation-Loss
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4.5.2 Num Epochs vs Validation Loss

Pearson Correlation=-0.58718, R-Squared=0.34478, Validation-Loss=-0.28(Num-Epochs

®  Given Data Points of Num-Epochs vs Validation-Loss
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4.5.3 Batch Size vs Validation Loss

Pearson Correlation=0.60056, R-Squared=0.36067, Validation-Loss=0.06(Batch-Size)+1

®  Given Data Points of Batch-Size vs Validation-Loss
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4.5.4 Train Loss vs Validation Loss

Pearson Correlation=0.98886, R-Squared=0.97784, Validation-Loss=0.93(Train-Loss)+-I

® Given Data Points of Train-Loss vs Validation-Loss
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4.6 Distributions
4.6.1 NVML Avg GPU Util

Frequency Distribution in 20 bins, and Cumulative Distribution Function
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4.6.2 NVML Avg Mem Used MB

Frequency Distribution in 20 bins, and Cumulative Distribution Function
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4.6.3 NVML Avg Mem Util

Frequency Distribution in 20 bins, and Cumulative Distribution Function
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4.6.4 NVML Avg GPU Power W

Frequency Distribution in 20 bins, and Cumulative Distribution Function
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4.7 Linear Regression

4.7.1 p Values for Target Validation Loss
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4.7.2 Normalised Regression Weights for Target Validation Loss

Normalised Regression Weights
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4.8 Random Forests

4.8.1 Feature Importances with Random Forests
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4.9 XGBoost
4.9.1 Feature Importances with XGBoost
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Part 5

Results

Below is a comparison among the base and fine-tuned models for the various questions.
The results are indicative and the model is not assumed for production.
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Question: What is Pharos Al Factory?”

1. Answer (Base model): Pharos Al Factory is a proprietary artificial intelligence
(AI) technology developed by the company Neso Group. It is a cloud-based platform
designed to support businesses in their digital transformation journey:.

2. Answer (Fine-tuned model): Pharos Al Factory is a Greek government initia-
tive to establish Greece as a hub for artificial intelligence (Al) and machine learning
(ML), providing access to cutting-edge technology, expertise, and infrastructure.
The project aims to promote the development of an Al ecosystem that can sup-
port the country’s digital transformation goals, including the creation of innovative
startups, research and development activities, and the integration of Al into various
sectors such as healthcare, finance, education, and public services.
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Question: What is the significance and benefits of the Pharos Al Factory project?

1. Answer (Base model): The Pharos Al Factory is a collaborative initiative aimed
at developing a robust, scalable, and secure artificial intelligence (Al) platform that
can be used for various applications. Here are some key aspects and benefits:

2. Answer (Fine-tuned model): The Pharos Al Factory is a flagship initiative of
Greece’s Hellenic Ministry of Digital Governance, in partnership with the European
Union. It serves as an essential tool for fostering innovation and digital transforma-
tion across various sectors by providing access to cutting-edge artificial intelligence
(AI) technologies, data, and expertise. By doing so, it aims to bridge the gap
between technological advancements and societal needs, thereby creating a robust
foundation for sustainable economic growth and competitiveness.
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Question: How is Pharos Al Factory connected to DAEDALUS?

1. Answer (Base model): Pharos Al Factory (PAF) and DAEDALUS are two dis-
tinct entities. However, they share some commonalities in their development process.

2. Answer (Fine-tuned model): Pharos Al Factory is a Greek initiative that sup-
ports the development and deployment of Artificial Intelligence (Al) technologies,
with its main goal being to empower businesses and public sector organizations in
their transformation towards digitalization. Pharos Al Factory has strong connec-
tions to DAEDALUS, which stands for Data Analytics and Decision Support for
European Agencies. The connection between the two initiatives enables users from
both sides to collaborate on projects related to data management, analytics, and
decision-making. By leveraging these collaborations, users can access valuable re-
sources, expertise, and support, contributing to the development of more effective
Al solutions across various sectors.
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Question: Which groups will benefit from Pharos Al Factory?

1. Answer (Base model): These are typically the ones that have a high need for
customized solutions, advanced analytics, and data-driven insights.

2. Answer (Fine-tuned model): Private companies, public administrations and
research organizations can all participate in the program. They can access resources
and tools to develop their Al capabilities, contribute to the development of EU-wide
Al strategies, improve their competitiveness and enhance innovation. Pharos is open
to the private sector, including startups, SMEs, as well as larger enterprises. It also
has a strong focus on the public sector, providing valuable expertise, support, and
opportunities for them to become more Al-competent, leading to better decision-
making, improved service quality, and enhanced competitiveness.
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Question: What is the connection between Al and HPC in Pharos?

1. Answer (Base model): Pharos is a type of autonomous underwater vehicle (AUV)
that can collect data from the ocean floor. It uses artificial intelligence (Al) to pro-
cess and analyze this data, which is then used to inform decision-making about
marine conservation and management. In Pharos, Al plays a critical role in collect-
ing, processing, and analyzing large amounts of sensor data from the ocean floor.
This data includes information about water temperature, salinity, chemistry, and
other physical properties of the seafloor. Here are some ways in which Al connects
with High-Performance Computing (HPC): 1. **Data analysis*™*: Al algorithms are
applied

2. Answer (Fine-tuned model): Pharos, a Greek Al Factory, is designed to support
Greece’s vision of becoming a global leader in Artificial Intelligence. As part of this
initiative, Pharos aims to create an ecosystem that fosters innovation, inclusivity,
and excellence. It includes several components, including Al Factories, which are
equipped with High-Performance Computing (HPC) infrastructure. In Pharos, HPC
plays a critical role in accelerating Al development, deployment, and analysis. By
leveraging HPC resources, researchers and developers can run complex simulations,
generate high-quality data, and train machine learning models more efficiently. This
enables them to tackle challenging problems
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