
Scalability of Large Language Models

Dr. Nikos Bakas

December 18, 2025



/ p.2 of 61



Contents

1 Scaling LLMs 7
1.1 GPU Monitoring Stack . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.1 NVML (NVIDIA Management Library) . . . . . . . . . . . . . . 8
1.1.2 nvidia-smi (NVIDIA System Management Interface) . . . . . . . 9
1.1.3 CUDA (Compute Unified Device Architecture) . . . . . . . . . . 10
1.1.4 torch.cuda (PyTorch CUDA package) . . . . . . . . . . . . . . . 11
1.1.5 nvidia-ml-py (official NVML Python bindings distribution) . . . 13
1.1.6 How software measures “hardware” telemetry (utilization, mem-

ory, temperature, power/energy) . . . . . . . . . . . . . . . . . . 14

2 GPU Utilization and Memory Usage 15
2.1 Task 0 - Model=meta-Llama-3.2-3B-Instruct . . . . . . . . . . . . . . . 16
2.2 Task 16 - Model=meta-Llama-3.2-3B-Instruct . . . . . . . . . . . . . . 18

3 Scalability Plots 21
3.1 Indiccative Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3



3.1.1 Efficiency vs Batch Size . . . . . . . . . . . . . . . . . . . . . . 22
3.1.2 Efficiency vs Max Length . . . . . . . . . . . . . . . . . . . . . 23
3.1.3 speedup vs Batch size . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.4 speedup vs Max Length . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Aggregated Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.1 Efficiency Distributions . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Speedup Distributions . . . . . . . . . . . . . . . . . . . . . . . 28

4 Statistical Analysis 29
4.1 Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.1 All by All Correlation Matrix . . . . . . . . . . . . . . . . . . . 30
4.1.2 All by All Relationships Top . . . . . . . . . . . . . . . . . . . . 31

4.2 Descriptive Statistics (Train Set) . . . . . . . . . . . . . . . . . . . . . 32
4.3 Model Llama 3.2 3B Instruct vs TORCH Avg Mem Used MB . . . . . . 33
4.4 NVML vs TORCH measurements . . . . . . . . . . . . . . . . . . . . . 35

4.4.1 NVML Avg GPU Temperature vs TORCH Avg GPU Temperature 35
4.4.2 NVML Avg Mem Used MB vs TORCH Avg Mem Used MB . . . 36

4.5 Hyperparameters vs Validation Loss . . . . . . . . . . . . . . . . . . . 38
4.5.1 Train Time vs Validation Loss . . . . . . . . . . . . . . . . . . . 38
4.5.2 Num Epochs vs Validation Loss . . . . . . . . . . . . . . . . . . 40
4.5.3 Batch Size vs Validation Loss . . . . . . . . . . . . . . . . . . . 41
4.5.4 Train Loss vs Validation Loss . . . . . . . . . . . . . . . . . . . 42

Contents / p.4 of 61



4.6 Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.6.1 NVML Avg GPU Util . . . . . . . . . . . . . . . . . . . . . . . 44
4.6.2 NVML Avg Mem Used MB . . . . . . . . . . . . . . . . . . . . 45
4.6.3 NVML Avg Mem Util . . . . . . . . . . . . . . . . . . . . . . . 46
4.6.4 NVML Avg GPU Power W . . . . . . . . . . . . . . . . . . . . 47

4.7 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.7.1 p Values for Target Validation Loss . . . . . . . . . . . . . . . . 49
4.7.2 Normalised Regression Weights for Target Validation Loss . . . . 50

4.8 Random Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.8.1 Feature Importances with Random Forests . . . . . . . . . . . . 52

4.9 XGBoost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.9.1 Feature Importances with XGBoost . . . . . . . . . . . . . . . . 54

5 Results 55

6 Acknowledgement 61

Contents / p.5 of 61



Contents / p.6 of 61



Part 1

Scaling LLMs

7



1.1 GPU Monitoring Stack

1.1.1 NVML (NVIDIA Management Library)

• Definition: C API for monitoring and managing NVIDIA GPU state (utilization,
memory, temperature, power, clocks, ECC, etc.); it is also the underlying library
used by nvidia-smi.

• Links:
– https://developer.nvidia.com/management-library-nvml
– https://docs.nvidia.com/deploy/nvml-api/

• Developed by: NVIDIA.
• Methods (API):

– nvmlInit — initialize NVML (must be called before queries).
– nvmlShutdown — shut down NVML when finished.
– nvmlDeviceGetHandleByIndex — get a handle to a specific GPU (by index).
– nvmlDeviceGetUtilizationRates — get GPU and memory-controller utiliza-

tion (% over the sample window).
– nvmlDeviceGetMemoryInfo — get total/free/used GPU memory.
– nvmlDeviceGetTemperature — get current GPU temperature (e.g., core tem-

perature).
– nvmlDeviceGetPowerUsage — get current power draw (typically in milliwatts).

Part 1: Scaling LLMs / Section 1.1: GPU Monitoring Stack / Subsection 1.1.1: NVML (NVIDIA Management Library) / p.8 of 61

https://developer.nvidia.com/management-library-nvml
https://docs.nvidia.com/deploy/nvml-api/


1.1.2 nvidia-smi (NVIDIA System Management Interface)

• Definition: A command-line tool (built on NVML) to monitor/query and (with priv-
ileges) manage NVIDIA GPUs; supports machine-readable output (e.g., CSV/XML)
for scripting.

• Links:
– https://developer.nvidia.com/system-management-interface
– https://docs.nvidia.com/deploy/nvidia-smi/

• Developed by: NVIDIA.
• CLI Commands:

– nvidia-smi –query-gpu=<fields> –format=csv,noheader — query spe-
cific metrics (e.g., utilization.gpu, utilization.memory, memory.used,
memory.total, temperature.gpu, power.draw) in script-friendly CSV.

– nvidia-smi -i <gpu> ... — select which GPU to query (useful on multi-GPU
systems).

– nvidia-smi -l <seconds> ... / nvidia-smi –loop-ms <ms> ... — repeat
queries at a fixed interval to log utilization/memory/temperature/power over
time.

– nvidia-smi -f <logfile> ... — write the output to a log file.
– nvidia-smi dmon — live per-GPU monitoring including utilization, memory ac-

tivity/usage, temperature, and power (depending on support).
Part 1: Scaling LLMs / Section 1.1: GPU Monitoring Stack / Subsection 1.1.2: nvidia-smi (NVIDIA System Management Interface) / p.9 of 61

https://developer.nvidia.com/system-management-interface
https://docs.nvidia.com/deploy/nvidia-smi/


1.1.3 CUDA (Compute Unified Device Architecture)

• Definition: NVIDIA’s GPU computing platform + APIs (runtime + driver) that
let software allocate GPU memory, launch kernels, and manage devices/streams to
run general-purpose computation on NVIDIA GPUs.

• Links:

– https://docs.nvidia.com/cuda/
– https://docs.nvidia.com/cuda/cuda-runtime-api/index.html
– https://docs.nvidia.com/cuda/cuda-programming-guide/01-introduction/

cuda-platform.html

• Developed by: NVIDIA.

• Methods (API):

– cudaMemGetInfo — query global free and total device memory (bytes).
– cudaGetDeviceProperties — get device properties including total global mem-

ory (totalGlobalMem).
– cudaMalloc / cudaFree — allocate/free memory on the GPU (device RAM).
– cudaMemcpy — copy data between host RAM and GPU RAM (or device-to-

device).

Part 1: Scaling LLMs / Section 1.1: GPU Monitoring Stack / Subsection 1.1.3: CUDA (Compute Unified Device Architecture) / p.10 of 61

https://docs.nvidia.com/cuda/
https://docs.nvidia.com/cuda/cuda-runtime-api/index.html
https://docs.nvidia.com/cuda/cuda-programming-guide/01-introduction/cuda-platform.html
https://docs.nvidia.com/cuda/cuda-programming-guide/01-introduction/cuda-platform.html


1.1.4 torch.cuda (PyTorch CUDA package)

• Definition: PyTorch’s CUDA interface for allocating CUDA tensors and running
GPU ops; also exposes some monitoring helpers (some are reported “as given by
nvidia-smi”).

• Link: https://docs.pytorch.org/docs/stable/cuda.html
• Developed by: The PyTorch open-source project (PyTorch Foundation under the

Linux Foundation).
• Methods you can use:

– torch.cuda.memory_allocated — bytes of GPU memory currently allocated
by PyTorch (this process).

– torch.cuda.max_memory_allocated — peak allocated GPU memory by Py-
Torch (this process).

– torch.cuda.reset_peak_memory_stats — reset PyTorch peak-memory statis-
tics.

– torch.cuda.memory.mem_get_info — global free/total GPU memory (bytes)
from CUDA (cudaMemGetInfo).

– torch.cuda.utilization — GPU utilization (% over a sampling window), re-
ported “as given by nvidia-smi”.

– torch.cuda.memory_usage — memory-controller utilization (% over a sampling
window), reported “as given by nvidia-smi”.

Part 1: Scaling LLMs / Section 1.1: GPU Monitoring Stack / Subsection 1.1.4: torch.cuda (PyTorch CUDA package) / p.11 of 61

https://docs.pytorch.org/docs/stable/cuda.html


– torch.cuda.temperature — GPU temperature (average over the past sample
period), reported “as given by nvidia-smi”.

– torch.cuda.power_draw — GPU power draw (average over the past sample
period), reported “as given by nvidia-smi”.

• torch.cuda vs NVML:

– PyTorch’s core torch.cuda is not NVML-based. The stuff that makes tensors
run on the GPU uses CUDA (driver/runtime), not NVML.

– Some torch.cuda info is explicitly CUDA-API-based, not NVML. For example
torch.cuda.memory.mem_get_info uses cudaMemGetInfo.

– But some PyTorch monitoring helpers are effectively NVML-based. Example:
torch.cuda.utilization() is documented as returning utilization “as given by
nvidia-smi” (which is NVML-backed)

Part 1: Scaling LLMs / Section 1.1: GPU Monitoring Stack / Subsection 1.1.4: torch.cuda (PyTorch CUDA package) / p.12 of 61



1.1.5 nvidia-ml-py (official NVML Python bindings distribution)

• Definition: The Python package distribution that wraps the NVML library and
provides the pynvml module for GPU management/monitoring from Python (i.e.,
you pip install nvidia-ml-py but you import pynvml). The separate pynvml
(https://pypi.org/project/pynvml/) PyPI project is deprecated and provides unof-
ficial utilities.

• Link: https://pypi.org/project/nvidia-ml-py/

• Developed by: NVIDIA.

• Methods you can use:

– pynvml.nvmlInit() — initialize NVML (must be called before queries).
– pynvml.nvmlDeviceGetHandleByIndex() — select a GPU (by index) to query.
– pynvml.nvmlDeviceGetMemoryInfo() — get total/free/used GPU memory.
– pynvml.nvmlDeviceGetUtilizationRates() — get GPU and memory-controller

utilization (% over a sampling window).
– pynvml.nvmlDeviceGetTemperature() — get current GPU temperature (e.g.,

core temperature).
– pynvml.nvmlDeviceGetPowerUsage() — get current GPU power draw (typi-

cally in milliwatts).

Part 1: Scaling LLMs / Section 1.1: GPU Monitoring Stack / Subsection 1.1.5: nvidia-ml-py (official NVML Python bindings distribution) / p.13 of 61

https://pypi.org/project/pynvml/
https://pypi.org/project/nvidia-ml-py/


1.1.6 How software measures “hardware” telemetry (utilization, memory, temperature,
power/energy)

The GPU has a built-in controller (a tiny processor in the GPU hardware) that
runs firmware (small software inside the GPU). That controller and the GPU
hardware provide telemetry such as temperature (typically from on-chip sensors),
power (from board power monitoring / telemetry), and activity counters.

The NVIDIA kernel driver (privileged software in the operating system) talks to
the GPU, collects these readings (often as averages over a short sampling window),
and exposes them to normal programs through standard interfaces such as NVML
(and tools built on it, like nvidia-smi). Some memory info can also come from
CUDA runtime queries (e.g., global free/total memory).

Part 1: Scaling LLMs / Section 1.1: GPU Monitoring Stack / Subsection 1.1.6: How software measures “hardware” telemetry (utilization, memory, temperature,
power/energy) / p.14 of 61



Part 2

GPU Utilization and Memory Usage

15



2.1 Task 0 - Model=meta-Llama-3.2-3B-Instruct

Batch=1, MaxLen=16, Epochs=1, GPUs=1, TrainLoss=1.5497436806559564,
ValLoss=1.297316551208496, TrainTime=917.2674236297609s

Part 2: GPU Utilization and Memory Usage / Section 2.1: Task 0 - Model=meta-Llama-3.2-3B-Instruct / p.16 of 61



Part 2: GPU Utilization and Memory Usage / Section 2.1: Task 0 - Model=meta-Llama-3.2-3B-Instruct / p.17 of 61



2.2 Task 16 - Model=meta-Llama-3.2-3B-Instruct

Batch=1, MaxLen=16, Epochs=4, GPUs=4, TrainLoss=1.224546863734722,
ValLoss=0.9465489983558656, TrainTime=1109.7244033813477s

Part 2: GPU Utilization and Memory Usage / Section 2.2: Task 16 - Model=meta-Llama-3.2-3B-Instruct / p.18 of 61



Part 2: GPU Utilization and Memory Usage / Section 2.2: Task 16 - Model=meta-Llama-3.2-3B-Instruct / p.19 of 61



Part 2: GPU Utilization and Memory Usage / Section 2.2: Task 16 - Model=meta-Llama-3.2-3B-Instruct / p.20 of 61



Part 3

Scalability Plots

3.1 Indiccative Plots

21



3.1.1 Efficiency vs Batch Size

Part 3: Scalability Plots / Section 3.1: Indiccative Plots / Subsection 3.1.1: Efficiency vs Batch Size / p.22 of 61



3.1.2 Efficiency vs Max Length

Part 3: Scalability Plots / Section 3.1: Indiccative Plots / Subsection 3.1.2: Efficiency vs Max Length / p.23 of 61



3.1.3 speedup vs Batch size

Part 3: Scalability Plots / Section 3.1: Indiccative Plots / Subsection 3.1.3: speedup vs Batch size / p.24 of 61



3.1.4 speedup vs Max Length

Part 3: Scalability Plots / Section 3.2: Aggregated Plots / Subsection 3.2.1: Efficiency Distributions / p.25 of 61



Part 3: Scalability Plots / Section 3.2: Aggregated Plots / Subsection 3.2.1: Efficiency Distributions / p.26 of 61



3.2 Aggregated Plots

3.2.1 Efficiency Distributions

Part 3: Scalability Plots / Section 3.2: Aggregated Plots / Subsection 3.2.1: Efficiency Distributions / p.27 of 61



3.2.2 Speedup Distributions

Part 3: Scalability Plots / Section 3.2: Aggregated Plots / Subsection 3.2.2: Speedup Distributions / p.28 of 61



29



Part 4

Statistical Analysis

4.1 Correlations

4.1.1 All by All Correlation Matrix

Part 4: Statistical Analysis / Section 4.1: Correlations / Subsection 4.1.1: All by All Correlation Matrix / p.30 of 61



4.1.2 All by All Relationships Top

Variable-
i

Variable-
j Value Metric

NVML-Avg-Mem-Used-MB Model-Llama-3.2-3B-Instruct 1.00e+00 F1Score
TORCH-Avg-Mem-Used-MB Model-lama-3.2-1B-Instruct 1.00e+00 F1Score

SMI-Avg-Mem-Used-MB Model-lama-3.2-1B-Instruct 1.00e+00 F1Score
SMI-Avg-Mem-Used-MB Model-Llama-3.2-3B-Instruct 1.00e+00 F1Score

NVML-Avg-Mem-Used-MB Model-lama-3.2-1B-Instruct 1.00e+00 F1Score
TORCH-Avg-Mem-Used-MB Model-Llama-3.2-3B-Instruct 1.00e+00 F1Score
NVML-Avg-Mem-Used-MB TORCH-Avg-Mem-Used-MB 1.00e+00 Pearson R
NVML-Avg-GPU-Temp-C TORCH-Avg-GPU-Temp-C 1.00e+00 Pearson R

NVML-Avg-GPU-Util TORCH-Avg-GPU-Util 1.00e+00 Pearson R
NVML-Avg-Mem-Util TORCH-Avg-Mem-Util 1.00e+00 Pearson R

NVML-Avg-GPU-Power-W TORCH-Avg-GPU-Power-W 1.00e+00 Pearson R
Train-Loss Validation-Loss 9.89e-01 Pearson R

NVML-Avg-Mem-Used-MB SMI-Avg-Mem-Used-MB 9.56e-01 Pearson R
TORCH-Avg-Mem-Used-MB SMI-Avg-Mem-Used-MB 9.56e-01 Pearson R
TORCH-Avg-GPU-Power-W TORCH-Avg-GPU-Temp-C 9.54e-01 Pearson R

Truncated Table. Total rows = 210.

Part 4: Statistical Analysis / Section 4.1: Correlations / Subsection 4.1.2: All by All Relationships Top / p.31 of 61



4.2 Descriptive Statistics (Train Set)

Variables mean median std min max skewness kurtosis
Batch-Size 8.22e+00 8.00e+00 5.95e+00 1.00e+00 1.60e+01 1.15e-01 -1.40e+00

Max-Length 2.43e+01 3.20e+01 7.99e+00 1.60e+01 3.20e+01 -7.41e-02 -1.99e+00
Num-Epochs 2.31e+00 2.00e+00 1.23e+00 1.00e+00 4.00e+00 4.24e-01 -1.44e+00
Num-GPUs 2.36e+00 2.00e+00 1.26e+00 1.00e+00 4.00e+00 3.40e-01 -1.55e+00
Train-Loss 2.02e+00 1.89e+00 6.23e-01 1.11e+00 3.70e+00 5.99e-01 -4.50e-01

NVML-Avg-GPU-Util 4.87e+01 5.21e+01 1.08e+01 2.09e+01 6.50e+01 -8.51e-01 1.48e-01
NVML-Avg-Mem-Util 3.08e+01 3.27e+01 8.31e+00 1.12e+01 4.35e+01 -6.00e-01 -2.47e-01

NVML-Avg-Mem-Used-MB 2.73e+04 3.30e+04 1.11e+04 1.38e+04 4.04e+04 4.28e-02 -1.84e+00
NVML-Avg-GPU-Power-W 1.51e+02 1.49e+02 2.52e+01 9.71e+01 2.24e+02 3.80e-01 4.77e-01
NVML-Avg-GPU-Temp-C 4.52e+01 4.50e+01 1.98e+00 4.05e+01 5.14e+01 5.46e-01 7.36e-01
TORCH-Avg-GPU-Util 4.87e+01 5.21e+01 1.08e+01 2.09e+01 6.50e+01 -8.50e-01 1.46e-01
TORCH-Avg-Mem-Util 3.08e+01 3.27e+01 8.31e+00 1.12e+01 4.35e+01 -6.00e-01 -2.46e-01

TORCH-Avg-Mem-Used-MB 2.67e+04 3.25e+04 1.11e+04 1.33e+04 3.99e+04 4.27e-02 -1.84e+00
TORCH-Avg-GPU-Power-W 1.51e+02 1.49e+02 2.52e+01 9.71e+01 2.24e+02 3.80e-01 4.80e-01
TORCH-Avg-GPU-Temp-C 4.52e+01 4.50e+01 1.98e+00 4.05e+01 5.14e+01 5.46e-01 7.35e-01

Truncated Table. Total rows = 21.

Part 4: Statistical Analysis / Section 4.2: Descriptive Statistics (Train Set) / p.32 of 61



4.3 Model Llama 3.2 3B Instruct vs TORCH Avg Mem Used MB

Figure 4.1: η2 = 0.95080 for Model Llama 3.2 3B Instruct vs TORCH Avg Mem Used MB

Part 4: Statistical Analysis / Section 4.4: NVML vs TORCH measurements / Subsection 4.4.1: NVML Avg GPU Temperature vs TORCH Avg GPU Temperature
/ p.33 of 61



Part 4: Statistical Analysis / Section 4.4: NVML vs TORCH measurements / Subsection 4.4.1: NVML Avg GPU Temperature vs TORCH Avg GPU Temperature
/ p.34 of 61



4.4 NVML vs TORCH measurements

4.4.1 NVML Avg GPU Temperature vs TORCH Avg GPU Temperature

Part 4: Statistical Analysis / Section 4.4: NVML vs TORCH measurements / Subsection 4.4.1: NVML Avg GPU Temperature vs TORCH Avg GPU Temperature
/ p.35 of 61



4.4.2 NVML Avg Mem Used MB vs TORCH Avg Mem Used MB

Part 4: Statistical Analysis / Section 4.5: Hyperparameters vs Validation Loss / Subsection 4.5.1: Train Time vs Validation Loss / p.36 of 61



Part 4: Statistical Analysis / Section 4.5: Hyperparameters vs Validation Loss / Subsection 4.5.1: Train Time vs Validation Loss / p.37 of 61



4.5 Hyperparameters vs Validation Loss

4.5.1 Train Time vs Validation Loss

Part 4: Statistical Analysis / Section 4.5: Hyperparameters vs Validation Loss / Subsection 4.5.1: Train Time vs Validation Loss / p.38 of 61



Part 4: Statistical Analysis / Section 4.5: Hyperparameters vs Validation Loss / Subsection 4.5.2: Num Epochs vs Validation Loss / p.39 of 61



4.5.2 Num Epochs vs Validation Loss

Figure 4.2: 059NegativePearson FeatureNum Epochs vs Target Validation Loss.html.json

Part 4: Statistical Analysis / Section 4.5: Hyperparameters vs Validation Loss / Subsection 4.5.2: Num Epochs vs Validation Loss / p.40 of 61



4.5.3 Batch Size vs Validation Loss

Part 4: Statistical Analysis / Section 4.5: Hyperparameters vs Validation Loss / Subsection 4.5.3: Batch Size vs Validation Loss / p.41 of 61



4.5.4 Train Loss vs Validation Loss

Part 4: Statistical Analysis / Section 4.6: Distributions / Subsection 4.6.1: NVML Avg GPU Util / p.42 of 61



Part 4: Statistical Analysis / Section 4.6: Distributions / Subsection 4.6.1: NVML Avg GPU Util / p.43 of 61



4.6 Distributions

4.6.1 NVML Avg GPU Util

Part 4: Statistical Analysis / Section 4.6: Distributions / Subsection 4.6.1: NVML Avg GPU Util / p.44 of 61



4.6.2 NVML Avg Mem Used MB

Part 4: Statistical Analysis / Section 4.6: Distributions / Subsection 4.6.2: NVML Avg Mem Used MB / p.45 of 61



4.6.3 NVML Avg Mem Util

Part 4: Statistical Analysis / Section 4.6: Distributions / Subsection 4.6.3: NVML Avg Mem Util / p.46 of 61



4.6.4 NVML Avg GPU Power W

Part 4: Statistical Analysis / Section 4.7: Linear Regression / Subsection 4.7.1: p Values for Target Validation Loss / p.47 of 61



Part 4: Statistical Analysis / Section 4.7: Linear Regression / Subsection 4.7.1: p Values for Target Validation Loss / p.48 of 61



4.7 Linear Regression

4.7.1 p Values for Target Validation Loss

Part 4: Statistical Analysis / Section 4.7: Linear Regression / Subsection 4.7.1: p Values for Target Validation Loss / p.49 of 61



4.7.2 Normalised Regression Weights for Target Validation Loss

Part 4: Statistical Analysis / Section 4.8: Random Forests / Subsection 4.8.1: Feature Importances with Random Forests / p.50 of 61



Part 4: Statistical Analysis / Section 4.8: Random Forests / Subsection 4.8.1: Feature Importances with Random Forests / p.51 of 61



4.8 Random Forests

4.8.1 Feature Importances with Random Forests

Part 4: Statistical Analysis / Section 4.8: Random Forests / Subsection 4.8.1: Feature Importances with Random Forests / p.52 of 61



Part 4: Statistical Analysis / Section 4.9: XGBoost / Subsection 4.9.1: Feature Importances with XGBoost / p.53 of 61



4.9 XGBoost

4.9.1 Feature Importances with XGBoost

Part 4: Statistical Analysis / Section 4.9: XGBoost / Subsection 4.9.1: Feature Importances with XGBoost / p.54 of 61



Part 5

Results

Below is a comparison among the base and fine-tuned models for the various questions.
The results are indicative and the model is not assumed for production.

55



Question: What is Pharos AI Factory?

1. Answer (Base model): Pharos AI Factory is a proprietary artificial intelligence
(AI) technology developed by the company Neso Group. It is a cloud-based platform
designed to support businesses in their digital transformation journey.

2. Answer (Fine-tuned model): Pharos AI Factory is a Greek government initia-
tive to establish Greece as a hub for artificial intelligence (AI) and machine learning
(ML), providing access to cutting-edge technology, expertise, and infrastructure.
The project aims to promote the development of an AI ecosystem that can sup-
port the country’s digital transformation goals, including the creation of innovative
startups, research and development activities, and the integration of AI into various
sectors such as healthcare, finance, education, and public services.

Part 5: Results / p.56 of 61



Question: What is the significance and benefits of the Pharos AI Factory project?

1. Answer (Base model): The Pharos AI Factory is a collaborative initiative aimed
at developing a robust, scalable, and secure artificial intelligence (AI) platform that
can be used for various applications. Here are some key aspects and benefits:

2. Answer (Fine-tuned model): The Pharos AI Factory is a flagship initiative of
Greece’s Hellenic Ministry of Digital Governance, in partnership with the European
Union. It serves as an essential tool for fostering innovation and digital transforma-
tion across various sectors by providing access to cutting-edge artificial intelligence
(AI) technologies, data, and expertise. By doing so, it aims to bridge the gap
between technological advancements and societal needs, thereby creating a robust
foundation for sustainable economic growth and competitiveness.

Part 5: Results / p.57 of 61



Question: How is Pharos AI Factory connected to DAEDALUS?

1. Answer (Base model): Pharos AI Factory (PAF) and DAEDALUS are two dis-
tinct entities. However, they share some commonalities in their development process.

2. Answer (Fine-tuned model): Pharos AI Factory is a Greek initiative that sup-
ports the development and deployment of Artificial Intelligence (AI) technologies,
with its main goal being to empower businesses and public sector organizations in
their transformation towards digitalization. Pharos AI Factory has strong connec-
tions to DAEDALUS, which stands for Data Analytics and Decision Support for
European Agencies. The connection between the two initiatives enables users from
both sides to collaborate on projects related to data management, analytics, and
decision-making. By leveraging these collaborations, users can access valuable re-
sources, expertise, and support, contributing to the development of more effective
AI solutions across various sectors.

Part 5: Results / p.58 of 61



Question: Which groups will benefit from Pharos AI Factory?

1. Answer (Base model): These are typically the ones that have a high need for
customized solutions, advanced analytics, and data-driven insights.

2. Answer (Fine-tuned model): Private companies, public administrations and
research organizations can all participate in the program. They can access resources
and tools to develop their AI capabilities, contribute to the development of EU-wide
AI strategies, improve their competitiveness and enhance innovation. Pharos is open
to the private sector, including startups, SMEs, as well as larger enterprises. It also
has a strong focus on the public sector, providing valuable expertise, support, and
opportunities for them to become more AI-competent, leading to better decision-
making, improved service quality, and enhanced competitiveness.

Part 5: Results / p.59 of 61



Question: What is the connection between AI and HPC in Pharos?

1. Answer (Base model): Pharos is a type of autonomous underwater vehicle (AUV)
that can collect data from the ocean floor. It uses artificial intelligence (AI) to pro-
cess and analyze this data, which is then used to inform decision-making about
marine conservation and management. In Pharos, AI plays a critical role in collect-
ing, processing, and analyzing large amounts of sensor data from the ocean floor.
This data includes information about water temperature, salinity, chemistry, and
other physical properties of the seafloor. Here are some ways in which AI connects
with High-Performance Computing (HPC): 1. **Data analysis**: AI algorithms are
applied

2. Answer (Fine-tuned model): Pharos, a Greek AI Factory, is designed to support
Greece’s vision of becoming a global leader in Artificial Intelligence. As part of this
initiative, Pharos aims to create an ecosystem that fosters innovation, inclusivity,
and excellence. It includes several components, including AI Factories, which are
equipped with High-Performance Computing (HPC) infrastructure. In Pharos, HPC
plays a critical role in accelerating AI development, deployment, and analysis. By
leveraging HPC resources, researchers and developers can run complex simulations,
generate high-quality data, and train machine learning models more efficiently. This
enables them to tackle challenging problems

Part 5: Results / p.60 of 61



Part 6

Acknowledgement

We acknowledge EuroHPC JU for awarding the project ID
EHPC-AIF-2025PG01-462 access to MeluXina on the gpu partition hosted by

LuxProvide.

61


	Scaling LLMs
	GPU Monitoring Stack
	NVML (NVIDIA Management Library)
	nvidia-smi (NVIDIA System Management Interface)
	CUDA (Compute Unified Device Architecture)
	torch.cuda (PyTorch CUDA package)
	nvidia-ml-py (official NVML Python bindings distribution)
	How software measures “hardware” telemetry (utilization, memory, temperature, power/energy)


	GPU Utilization and Memory Usage
	Task 0 - Model=meta-Llama-3.2-3B-Instruct
	Task 16 - Model=meta-Llama-3.2-3B-Instruct

	Scalability Plots
	Indiccative Plots
	Efficiency vs Batch Size
	Efficiency vs Max Length
	speedup vs Batch size
	speedup vs Max Length

	Aggregated Plots
	Efficiency Distributions
	Speedup Distributions


	Statistical Analysis
	Correlations
	All by All Correlation Matrix
	All by All Relationships Top

	Descriptive Statistics (Train Set)
	Model Llama 3.2 3B Instruct vs TORCH Avg Mem Used MB
	NVML vs TORCH measurements
	NVML Avg GPU Temperature vs TORCH Avg GPU Temperature
	NVML Avg Mem Used MB vs TORCH Avg Mem Used MB

	Hyperparameters vs Validation Loss
	Train Time vs Validation Loss
	Num Epochs vs Validation Loss
	Batch Size vs Validation Loss
	Train Loss vs Validation Loss

	Distributions
	NVML Avg GPU Util
	NVML Avg Mem Used MB
	NVML Avg Mem Util
	NVML Avg GPU Power W

	Linear Regression
	p Values for Target Validation Loss
	Normalised Regression Weights for Target Validation Loss

	Random Forests
	Feature Importances with Random Forests

	XGBoost
	Feature Importances with XGBoost


	Results
	Acknowledgement

