
October 2025

Fundamentals of

Large Language

Models

What is language modeling?
A language model (LM) is a machine learning model that aims to predict and

generate plausible language.

These models work by estimating the probability of a token or sequence of tokens

occurring within a longer sequence of tokens.

The cat sat on the _______

Couch 9.4%

Car 7.1%
Fork 2.6%

….

The LM most probably predicts 'couch', since it has learned during massive pre-

training that 'a cat sat on the couch' is a common situation in natural language.

From words to tokens
Motivation: Why Tokenization Exists

Natural language is continuous and ambiguous, but models require discrete, finite

inputs. Tokenization bridges this gap by establishing manageable units.

The cats are sleeping

Too many unique forms!cat cats catlike

Goal

Find a unit of text small enough to generalize across words but large enough to

avoid huge vocabularies.

Tokenization
Most common approach: Subword-level

Breaks words into frequent subunits (subwords) that can be recombined.

Various widely adopted techniques:
• Byte Pair Encoding (BPE) – used in GPT, RoBERTa

• WordPiece – used in BERT
• SentencePiece – used in T5, LLaMA

• Unigram LM – probabilistic approach to subword segmentation

Example (BPE):
“unhappiness” → [“un”, “happy”, “ness”]

Advantages

• Handles rare and new words.

• Keeps sequence lengths manageable.
• Enables compression and generalization.

Vectorization
Once text is tokenized, each token index is mapped to a dense vector via an

embedding matrix.

• V = vocabulary size (e.g., 50,000)

• d = embedding dimension (e.g., 1024).

Each token 𝑡𝑖 corresponds to a vector 𝐸𝑡𝑖 representing its semantic and syntactic
role.

This conversion from token to vectors is necessary since a neural network (the

LLM) cannot process words, but it can process numbers.

Positional Encodings
Transformers have no inherent order awareness, since attention mechanism treats

input as a set.

Positional information: “cat sat on the couch” ≠ “couch sat on the cat”.

• Sinusoidal Encoding (original Transformer): Adds smooth periodic signals for
relative position comparison.

• Learned Positional Embeddings: Position vectors are learned like token

embedding.

• Rotary Position Embeddings (RoPE): Used in modern LLMs (LLaMA, Mistral).

Encodes position within attention computation by rotating query/key vectors.

The model’s input representation = Token Embedding + Positional Encoding

These vectors (one per token) are the continuous representation of discrete language.

Transformer architecture for language
modeling

Each Transformer layer (in GPT, BERT, etc.) consists

of two main sub-layers:

• Self-Attention layer: lets every token attend to

every other token in the sequence (context mixing).

• Feedforward layer (MLP): transforms each token’s

representation independently (nonlinear

transformation).

Each sub-layer is wrapped with:

• Residual connections: gradient stabilization

• Layer normalization: numerical stabilization

Attention mechanisms
At its core, attention takes a bunch of input word representations and computes how

much each one should influence every other.

We break down attention in the following steps:

Step 1: Each Token Looks Around

“Which other tokens are relevant to me right now?”

It compares itself to all others using a similarity measure (dot products between

“queries” and “keys”). The more similar the context, the higher the “attention score.”

Attention mechanisms
Step 2: Convert Scores to Weights

These similarity scores are normalized (via a softmax) so they become attention

weights, like percentages of focus.

Example (conceptually): “it” gives 70% of its attention to “animal.” That’s re-

weighting: “animal” now has the biggest influence on what “it” means in context.

Attention mechanisms
Step 3: Weighted Averaging of Information

The model takes all token embeddings and combines them, but multiplies each by its

attention weight before summing.

So the new representation of “it” becomes mostly composed of “cat’s” vector, with a

touch of other context.

Step 4: Contextualized Output

The result: Every token now has a context-aware embedding and it knows what

matters to it in the current sentence:

• “it” knows it refers to “cat”
• “street” knows it’s a location

• “tired” knows it modifies “cat,” not “street”

This happens for every token, in parallel.

Attention mechanisms
Self-Attention

Self-attention allows each token to look at (attend to) other tokens in the same

sequence to decide what’s important for predicting the next token. It dynamically

computes context-dependent weights between all tokens, meaning the model can

capture long-range dependencies (e.g., linking “cat” and “it” even if separated by
many words).

“The cat didn’t cross the street because it was too tired.”

That’s attention: deciding which earlier words matter most for understanding the

current one.

Attention mechanisms
Multi-head attention

Instead of a single attention operation, Transformers use multiple attention heads in

parallel to achieve multi-perspective re-weighting. Each head learns a different type

of relationship (e.g., syntactic, semantic, long-range dependencies).

Typical configurations

• GPT-3: 96 heads

• GPT-4 / GPT-5: hundreds of attention heads across billions of parameters

Causal masking
Because GPT-style models predict tokens left-to-right, they must not peek at future

tokens. So we apply a causal mask — set all scores for 𝑗>𝑖 to −∞ before softmax,

ensuring the model can only attend to previous tokens.

This keeps the autoregressive property intact.

Feedforward (FFN) layers
After attention builds context, we need a mechanism to transform each

contextualized representation into richer, nonlinear features.

Feedforward layers instruct how to process the information coming from

attention.

Each token’s representation after attention re-weighting 𝑧𝑖 independently passes

through the same 2-layer MLP followed by an activation function (ReLU, GeLU etc).

The FFN layer

• Adds nonlinearity

• Expands representational capacity

• Enables hierarchical feature transformations

Residual connection and layer normalization
Each sublayer (Attention and FFN) is wrapped in residual connections enabling

stable gradient flow, faster convergence and smoother training for deep networks

(hundreds of layers).

Why Residuals Matter

• Without them, information from early layers would degrade as it moves through

depth (vanishing gradient problem).
• Residuals allow the model to add new knowledge while preserving the old one.

Language Model training
Given a context (tokens so far), what is the probability distribution over all possible

next tokens?

Formally:

Training Objective

The model is trained on large corpora to maximize the likelihood of the correct next

token given the previous ones. For a sequence of tokens 𝑤1,𝑤2,...,𝑤𝑛, the model tries

to maximize the joint probability for the whole sequence:

Language Model training
Training Objective

Equivalently, it minimizes the negative log-likelihood (NLL) or cross-entropy loss,

which measures the distance between two distributions:

• θ = model parameters (weights),

• 𝑃𝜃(⋅)= the probability distribution predicted by the model.

Ultimately, we are comparing the model’s predicted distribution with the “true”

one-hot distribution (where only the correct token has probability 1) and tries to

make the true next token’s log-probability as large as possible.

Lower loss means the model is better at predicting the correct token.

How to compute token probabilities
Model architecture

The model learns to compute P(𝑤t|𝑤1,𝑤2,...,𝑤𝑛) using a transformer architecture,

which includes:

• Token embeddings: Each token is converted into a vector.

• Positional embeddings: Add information about the token’s position in the

sequence.

• Self-attention layers: Each token attends to all previous tokens (not future ones,
since prediction must be causal).

• Feedforward layers: Nonlinear transformations that allow abstraction and pattern

learning.

How to compute token probabilities
At the top layer, the model produces a probability distribution over the vocabulary for

the next token via a softmax function.

Probability distribution

At each step 𝑡, the model produces a logit vector 𝑧𝑡, one unnormalized score per
vocabulary token.

To convert logits into probabilities we enforce a softmax function which ensures:
• All probabilities are positive

• They sum to 1

• The model outputs a valid distribution over the vocabulary.

Perplexity: Measuring Model Quality
Perplexity (PPL) measures how “surprised” a model is by the true data

Interpretation

• Low perplexity → model assigns high probability to correct tokens → better

predictive fit.
• High perplexity → model is uncertain or wrong often.

Example
• Random model: high perplexity (≈ vocabulary size).

• Fluent LLM: low perplexity (~10–30 on test corpora).

Training details
Initialization

Proper weight initialization is crucial for stable Transformer training, otherwise

gradients can explode or vanish. Good initialization prevents early divergence before

the optimizer takes over.

Goal: ensure that activations and gradients stay in a “healthy” range across layers.

Optimization

Transformers almost universally use AdamW, a variant of Adam with decoupled

weight decay. This makes training more stable and weight decay more predictable, a

crucial factor for billion-scale language models.

Training details
Learning Rate Scheduling

The learning rate is not static; it follows a carefully shaped schedule to prevent
instability.

Warmup + Cosine Decay (most common)

• Warmup phase: Gradually increase the learning rate from 0 to its peak over a few

thousand steps. This strategy prevents gradient explosion in early steps.
• Decay phase: After warmup, learning rate slowly decays (often cosine-shaped) to

fine-tune model weights smoothly.

Typical settings

• Warmup steps: 1k–10k
• Total steps: millions

• Final LR: ~10× smaller than peak LR

Training details
Mixed Precision Training (FP16 / BF16)

Motivation: speed + memory efficiency.

Instead of using 32-bit floats everywhere

• Store most activations in 16-bit (FP16 or BF16)
• Keep some critical variables (like loss scaling, running averages) in 32-bit

Benefits
• 2× faster training

• 2× less memory

Nearly no loss in accuracy (if done correctly).

BF16 (bfloat16) is preferred now because it avoids numerical underflow without

needing dynamic loss scaling.

Training details
Parallelism: How Large Models Fit Across Many GPUs

• Data Parallelism: Different GPUs process different mini-batches
• Model Parallelism: Different GPUs hold different parts of the model (layers or

weights)

• Tensor Parallelism: Split individual matrix multiplications across GPUs

• Pipeline Parallelism: Split model by layers; pass activations between GPUs

Overfitting and Regularization
Even massive models can overfit, especially on small or narrow datasets.

Dropout

• Randomly zeroes some activations during training.

• Typical dropout rate: 0.1–0.2 in Transformers.

• Applied in attention and FFN layers.

Weight Decay (L2 Regularization)

• Prevents weights from growing too large.
• Integrated in AdamW.

• Encourages smoother generalization.

Overfitting and Regularization
Early Stopping & Validation Loss

• Monitor perplexity on a held-out validation set.
• Stop training when loss stops improving.

Data Regularization

• Massive diverse datasets (web, books, code) act as implicit regularization.

• Deduplication and data mixing reduce memorization risk.

• Some models use noise injection (token masking or random token corruption).

Overfitting and Regularization
Label Smoothing

• Softens one-hot targets slightly (e.g., assign 0.9 to the correct token, 0.1 spread
over others).

• Prevents overconfidence and improves calibration.

Gradient Clipping

• Caps gradient norm (e.g., at 1.0) to prevent instability.
• Especially critical for large batch sizes.

Regularization Through Scale

Counterintuitively, larger models overfit less if trained with more data; this is the

essence of scaling laws. Training data grows with parameter count, keeping the

model in the “predictive generalization” regime.

LLM inference

Language Model inference
At inference time (after training), next-token prediction is used iteratively:

• Input: “The cat sat on the”
• Model predicts probability distribution over next tokens.

• Sample or choose the highest-probability token (“couch”).

• Append it to the context → “The cat sat on the couch”.

• Repeat.

Thus, generation = repeated next-token prediction.

Sampling strategies
Deterministic vs. Stochastic Sampling

At every generation step, the model outputs a probability distribution over the
vocabulary:

We can either:

• Choose deterministically (always pick the most probable token)
• Sample stochastically (draw randomly from the probability distribution)

Each method has trade-offs between coherence, diversity, and creativity.

Sampling strategies
Greedy decoding

At each step, select the token with the highest probability.

Pros
• Fast and simple

• Produces grammatical, predictable text

Cons

• Often repetitive (“The cat sat on the the the…”)

• Gets stuck in local optima — can’t recover from early mistakes

• Low diversity (always the same output for the same prompt)

When to use: factual completion tasks, short deterministic answers (e.g., code

completion).

Sampling strategies
Beam Search (Semi-Deterministic)

Instead of committing to one token at a time, keep multiple top candidate sequences

(beams) at each step.

Pros
• More global search than greedy

• Often used in translation tasks (seq2seq models)

Cons

• Computationally expensive

• Still low diversity

• Not ideal for open-ended generation (like storytelling or chat)

Sampling strategies
Random Sampling (Stochastic)

Sample from the full probability distribution.

Pros

• Creative and varied

• Captures the model’s uncertainty

Cons

• Can generate incoherent or irrelevant tokens if low-probability options are sampled

• Requires careful temperature tuning (see below)

When to use: open-ended text generation, brainstorming, creative writing.

Sampling strategies
Temperature Scaling

Before sampling, we can control the sharpness of the probability distribution using a

temperature parameter 𝑇.

• Low T (< 1): sharper distribution — model becomes more deterministic
• High T (> 1): flatter distribution — model becomes more random

Sampling strategies
Top-k Sampling

Instead of sampling from the entire vocabulary (often tens of thousands of tokens),

restrict to the top k most probable tokens.

Then renormalize probabilities and sample from that subset.

Pros

• Prevents low-probability (nonsensical) tokens
• Retains controlled randomness

Typical values: 𝑘=20–50

Effect

Balances quality and diversity, much better than full random sampling.

Sampling strategies
Top-p (Nucleus) Sampling

Instead of a fixed number of tokens, dynamically choose the smallest set of tokens

whose cumulative probability ≥ p.

Then sample only from that nucleus.

Typical values: 𝑝=0.8–0.95

Pros
• Adapts to context: few options for confident predictions, more options when

uncertain

• Produces fluent and diverse text

• Avoids unnatural truncation of the probability tail

Effect

Much more human-like text; this is the default in GPT-family models.

Learning outcomes
Although the training objective is simple (just next-token prediction), it implicitly

teaches the model to:

• Learn grammar and syntax (to predict correct structures)

• Capture semantics (to predict contextually appropriate words)

• Encode world knowledge (to predict factual continuations)

• Model pragmatics, style, and tone (to match discourse patterns)

This happens because next-token prediction forces the model to compress the

structure and meaning of language into its parameters.

Instead of exact memorization, the model learns statistical and conceptual

regularities across billions of examples, so it can guess the next token even in novel

contexts.

Emergent abilities

• Predictable, smooth performance improvements with

diminishing returns when scaling data, parameters

and compute

• Quantitative measure: Often measured by language

modeling loss

• Continuous and monotonic improvement

• Capabilities that appear discontinuously and

unpredictably once the model crosses a certain

scale threshold.

• Qualitative measure: Often measured by task

performance

• Sharp performance leap: nonlinear, abrupt,

phase-transition-like jumps

• Similar to how neural networks suddenly begin to

classify non-linear patterns once enough

neurons/layers exist.

On the cost of emergent abilities
Emergent abilities tend to appear once the training compute budget (total FLOPs used to train
the model)crosses certain thresholds for a given architecture and data regime.

FLOPs = Model size (Parameters) x Training Tokens x Operations per Token

Model size: The number of parameters in the model. Larger

models require more operations per forward and backward
pass.
Training Data (Tokens): The number of tokens the model

processes during training.
Operations per Token: FLOPs per training iteration,

including forward pass, backward pass, and optimization
steps.

FLOPs are a strong correlate (but not a guaranteed cause) of
emergence. In practice, architecture, data composition and

optimization matter too.

Why HPC is Essential for LLMs
Αs language models grow in size, we observe consistent improvements in:

• Accuracy

• Generalization, and

• Task versatility.

These gains emerge only when models reach certain parameter and compute thresholds.

Training at such scales requires massive computational capacity. HPC provide the

parallelism, bandwidth, and reliability needed to handle trillions of operations during

training.

Without HPC-level resources, it becomes impossible to explore larger architectures or reach

the regimes where advanced capabilities begin to appear.

Compute Limits LLM Scaling
Consumer-grade environments come with strict constraints on memory, compute power, and runtime. These

limitations make it impossible to run larger architectures or perform full-scale experiments with modern
LLMs.

• e.g., Google Colab and Kaggle typically allow models up to ~7B parameters.
• Larger models (e.g., 70B) cannot be executed or evaluated end-to-end in these environments.

Even when using the same dataset and the same methods, the performance changes dramatically
simply by increasing the model size. Scaling alone drives the performance jump.

• Larger models = better performance using the exact same data and methods.

• HPC enables scaling to much bigger models → higher accuracy without changing anything else.

Scaling Example
We consider a high-difficulty NLP task: automatically judging whether a political answer is clear, vague, or

evasive.
The task is challenging even for strong language models.

Using the same dataset and the same tuning method, only the model size changes, and the results shift
dramatically.

The experiments were conducted on an HPC system, specifically on Meluxina.

Model Size Accuracy F1

Llama 7B 0.489 0.457

Llama 13B 0.587 0.580

Llama 70B 0.759 0.680

Falcon 7B 0.288 0.175

Falcon 40B 0.341 0.356

Scaling Example
Llama:

• 7B: Accuracy 0.49, F1 0.46
• 13B: Accuracy 0.59, F1 0.58
• 70B: Accuracy 0.76, F1 0.68

Falcon:

• 7B: Accuracy 0.29, F1 0.18
• 40B: Accuracy 0.34, F1 0.36

Same data, same method, only the model scale changes.
And as scale increases, performance improves substantially.

• ≈20% performance gain simply by scaling the model size.

This kind of scaling, moving from 7B to 70B models, requires HPC infrastructure, since consumer hardware

cannot support training or full evaluation of such large models.

Model Size Accuracy F1

Llama 7B 0.489 0.457

Llama 13B 0.587 0.580

Llama 70B 0.759 0.680

Falcon 7B 0.288 0.175

Falcon 40B 0.341 0.356

Scaling Resources

As models exceed 30-70B parameters, VRAM demands jump into the 20–50 GB range, and ultra-large

models (400B–700B) require 2000-400+ GB, making HPC clusters mandatory.

Scaling to ultra-large models pushes hardware far beyond consumer GPUs.

Even single-GPU inference becomes impossible without enterprise-grade accelerators.

Model Size Memory Recommended GPUs

Llama 3 / 3.1

7B 4.5–4.9 GB GTX 1660 / RTX 3060 Ti

70B 40–43 GB RTX A6000 48GB / A40 48GB

405B 243 GB 4×A100 80GB

DeepSeek R1

7B 4.7 GB GTX 1660 6GB

70B 43 GB RTX A6000 / Dual 4090

671B 404 GB Multi-GPU Cluster (A100/H100)

Qwen (2.5 / 1.5)

7B 4.4–4.7 GB GTX 1660 6GB

32B 20 GB RTX 4090 / A5000 24GB

110B 63 GB A100 80GB / H100

Gemma 2

2B 1.6 GB Quadro P1000 4GB

9B 5.4 GB RTX 3060 Ti 8GB

27B 16 GB RTX 4090 / A5000

Mixtral (MoE)
8×7B 26 GB RTX A6000 / A40

8×22B 80 GB 2×A6000 or 2×A100 80GB

But size isn't everything
LLMs in practice reflect capability, which emerges from a combination of scale, data,

architecture, and optimization, not just from raw size.

Factors that affect LLM capability

• Training Data Quality and Diversity
o Models trained on high-quality, well-filtered, diverse corpora can outperform a much

larger one trained on noisy or narrow text.

• Architectural Sophistication
o Architecture determines how well a model uses its parameters e.g. Mixture-of-Experts.

• Context Window
o Larger context windows (e.g., 128k or 1M tokens) enable richer reasoning and better

memory — often more impactful than adding parameters.

• Training Objectives
o Auxiliary training objectives (e.g., contrastive learning, reinforcement fine-tuning,

retrieval-augmented pretraining) enhance reasoning and factual recall.

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

