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Motivation for OpenMP

Why OpenMP?

Simplicity and Portability

Avoid low-level threading (e.g., pthreads)
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First example from https://people.math.sc.edu/burkardt/cpp src/openmp/openmp.html



Motivation for OpenMP | Simplicity and Portability

Simplicity and Portability

A de-facto standard API to write shared memory parallel applications
in C, C++ and Fortran

Compiler directives

Runtime routines

Environment variables

Very mature (around since 1997)

Version 6.0 has been released (11/2024)
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Motivation for OpenMP | Simplicity and Portability

Simplicity and Portability

Portable: supported by GNU, Intel, NVIDIA/PGI, SUN Studio, others

Portable: supported on many (all important ones) Hardware platforms

Allows incremental parallelisation (see next slide)

You can revert to your serial application with a flick of a switch (either
set OPENMP NUM THREADS to 1 or don’t link with libopenmp)

Supports tasks

Supports other architectures (offloading to accelerators)

Can be used with MPI for hybrid parallelism
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Motivation for OpenMP | Simplicity and Portability

Incremental Approach

Parallelism added incrementally until performance goals are met:

Start with a serial application

Benchmark

Identify hotspots

Parallelise that section

Repeat
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Introduction

Introduction

OpenMP stands for Open Multi-Processing.

It is an API for shared-memory parallel programming.

Supports C, C++, and Fortran.

C/C++

#pragma omp parallel for

for (int i = 0; i < N; i++)

{

a[i] = b[i] + c[i];

}

Fortran

!$omp parallel do

do i = 1, N

a(i) = b(i) + c(i)

end do

!$omp end parallel do
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Introduction | Shared Memory Systems

Shared Memory Systems

A shared memory system has processing units (CPUs/cores) and
memory

Memory is accessible by every CPU/core

There is one and only one memory (address) space
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Introduction | Shared Memory Systems

Uniform Memory Access

All CPUs share the same
memory.

Equal access time for all
processors.

Simpler programming model.

Common in small-scale systems
like desktops or basic servers.
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Introduction | Shared Memory Systems

Non-Uniform Memory Access

a

aImage source: What is NUMA

Each processor has its own local
memory, but can also access
other CPUs’ memory.

Faster access to local memory,
slower to remote memory.

More complex but scales better
for large systems.

Common in modern HPC nodes
and multi-socket servers.
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Introduction | Shared Memory Systems

Reality

This is how a Real System looks like.
(ARIS expansion)

Multiple levels of Cache(s)

Memory could be
split/fragmented across
CPUs/Sockets

Sharing of hardware resources
across CPUs/Sockets (L3
caches)
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Introduction | Shared Memory Systems

Reality / Closeup

August 2025 Introduction: Shared Memory Systems 13/128



Introduction | Threaded Programming Model

Threaded Programming Model

OpenMP uses threads.

A thread is the smallest unit of processing that can be scheduled by
an operating system.

Threads are very light-weight processes; but threads can share
memory with other threads.

However, each Thread has it’s own stack and stack pointers.

Threads are part of a process. Without a process, threads do not
exist.

Threads can access Shared Data.

Threads can have Private Data.

Threads are unique and have their own state (regardless of the other
threads).

August 2025 Introduction: Threaded Programming Model 14/128



Introduction | Threaded Programming Model

Fork - Join Model

1

1Image source: By Wikipedia user A1 - w:en:File:Fork join.svg, CC BY 3.0
August 2025 Introduction: Threaded Programming Model 15/128

https://commons.wikimedia.org/w/index.php?curid=32004077


Introduction | Threaded Programming Model

Hello World C/C++

C/C++

#include "omp.h"

#include <stdio.h>

int main()

{

#pragma omp parallel

{

printf("Hello from process: %d \n",

omp_get_thread_num ());

}

}

gcc -g3 -O2 -Wall -Wextra 01.c -o 01.exe -fopenmp

August 2025 Introduction: Threaded Programming Model 16/128



Introduction | Threaded Programming Model

Hello World Fortran

Fortran

PROGRAM Parallel_Hello_World

USE OMP_LIB

!$OMP PARALLEL

PRINT *, "Hello from process: ", OMP_GET_THREAD_NUM ()

!$OMP END PARALLEL

END

gfortran -g3 -O2 -Wall -Wextra 01.f90 -o 01_f.exe -

fopenmp
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Introduction | Threaded Programming Model

Shared Data Model

Threads can (for non-trivial problems they must) exchange data.

Shared Data constructs are used to exchange data.

Thread A writes to a shared variable.
Thread B reads the shared variable.

No implicit synchronisation

No implicit barriers (on entry)

No implicit checks
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Introduction | Threaded Programming Model

Thread Sharing Data

Process
Shared Memory Address Space

Private Data
Thread

Private Data
Thread

Private Data
Thread

A single Process; with many Threads

Each Thread has it’s own Private Data

All Threads share Shared Data

The OS is responsible for scheduling
the Process/Threads

Without synchronisation, things fall
apart.
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Introduction | Thread Sharing Data Example

Thread Sharing Data Example

Thread A
Private Data:

Thread B
Private Data:

Process
Shared Data:
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Introduction | Thread Sharing Data Example

Thread Sharing Data Example

Thread A
Private Data:
p answer=42

Thread B
Private Data:

Process
Shared Data:
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Introduction | Thread Sharing Data Example

Thread Sharing Data Example

Thread A
Private Data:
p answer=42

Thread B
Private Data:

Process
Shared Data:
g answer=42
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Introduction | Thread Sharing Data Example

Thread Sharing Data Example

Thread A
Private Data:
p answer=42

Thread B
Private Data:
p answer=42

Process
Shared Data:
g answer=42
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Introduction | Thread Sharing Data Example

Thread Sharing Data Example

Thread A
Private Data:
p answer=42

Thread B
Private Data:
p answer=82

Process
Shared Data:
g answer=42
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Introduction | Synchronisation

Synchronisation

Simple Example, yet:

We don’t control the Threads (unless we block them) [DONT]

The OS controls thread execution and scheduling

Threads run at their own pace

Even in this very simple example, we need to guard that Thread B
doesn’t read an unitialised value from g answer.

Even though it takes one line of source code to modify a value; in
reality this is a multi-step process (at least three instructions are
issued).

If multiple threads try to modify a shared variable at the same time ...
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Introduction | Synchronisation

Synchronisation Example

Simple Example:

We want to add 8 to 0.

This is a computationally expensive problem; so we will use OpenMP.

Since we are adding 8; we will use 8 Threads.

Each Thread will add 1.

At the end we will print the result.

We are expecting to dramatically improve the performance of our
application.
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Introduction | Synchronisation

Synchronisation Example Single Threaded (C/C++)

C/C++

#include <stdio.h>

#define NUM_TIMES 8

int main()

{

int VALUE = 0;

for (int i = 0; i < NUM_TIMES; ++i)

{

VALUE += 1;

}

printf("Result :%d \n", VALUE);

}
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Introduction | Synchronisation

Synchronisation Example Single Threaded (Fortran)

Fortran

PROGRAM Training

implicit none

integer :: NUM_TIMES = 8, VALUE = 0, n

do n = 1, NUM_TIMES

VALUE = VALUE + 1

end do

PRINT *, "Result: ", VALUE

END PROGRAM Training
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Introduction | Synchronisation

Synchronisation Example Single Threaded (Fortran)

C/C++

gcc -g3 -O2 -Wall -Wextra -fsanitize=address ,undefined

02.c -o 02.exe

./02. exe

Result :8

Fortran

gfortran -g3 -O2 -Wall -Wextra -fsanitize=address ,

undefined 02.f90 -o 02_f.exe

./02_f.exe

Result: 8
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Introduction | Parallel Loops

Parallel Loops

In most applications; runtime is spent in loops.

Loops are the first place that we will want to parallelise.

If a loop is independent then it can be trivially parallelised.

A loop from 0-99 can be run on one thread running all iterations; or 4
threads can run iterations 0-24/25-49/50-74/75-99.
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Introduction | Parallel Loops

Synchronisation Example Single Threaded (C/C++)

C/C++

#include <stdio.h>

#include "omp.h" <===============

#define NUM_TIMES 8

int main()

{

int VALUE = 0;

#pragma omp parallel for <===============

for (int i = 0; i < NUM_TIMES; ++i)

{

VALUE += 1;

}

printf("Result :%d \n", VALUE);
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Introduction | Parallel Loops

Synchronisation Example Single Threaded (Fortran)

Fortran

PROGRAM Training

USE OMP_LIB <===============

implicit none

integer :: NUM_TIMES = 8, VALUE = 0, n

!$OMP PARALLEL DO <===============

do n = 1, NUM_TIMES

VALUE = VALUE + 1

end do

PRINT *, "Result: ", VALUE

END PROGRAM Training
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Introduction | Parallel Loops

Synchronisation Example Single Threaded (Fortran)

C/C++

gcc -g3 -O2 -Wall -Wextra -fsanitize=address ,undefined

02.c -o 02.exe -fopenmp

./02. exe

Result:X

Fortran

gfortran -g3 -O2 -Wall -Wextra -fsanitize=address ,

undefined 02.f90 -o 02_f.exe -fopenmp

./02_f.exe

Result: X
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Introduction | Synchronisation Example

Synchronisation Example

Thread A Thread B

Process
Shared Data:
VALUE=0
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Introduction | Synchronisation Example

Synchronisation Example

Thread A
load VALUE (0)

Thread B

Process
Shared Data:
VALUE=0

August 2025 Introduction: Synchronisation Example 35/128



Introduction | Synchronisation Example

Synchronisation Example

Thread A
load VALUE (0)
add VALUE 1 (1)

Thread B
load VALUE (0)

Process
Shared Data:
VALUE=0
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Introduction | Synchronisation Example

Synchronisation Example

Thread A
load VALUE (0)
add VALUE 1 (1)
store VALUE

Thread B
load VALUE (0)
add VALUE 1 (1)

Process
Shared Data:
VALUE=1
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Introduction | Synchronisation Example

Synchronisation Example

Thread A
load VALUE (0)
add VALUE 1 (1)
store VALUE

Thread B
load VALUE (0)
add VALUE 1 (1)
store VALUE

Process
Shared Data:
VALUE=1
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Introduction | Synchronisation Example

Race Condition

If you run the example code (in Linux or WSL) you will see that the
result is not always 8.

Why?? Sometimes the threads run one after another. Other times
they overlap.

If they overlap and at least one (in our case all of them)
writes/updates a shared value; we can have a race condition.

Race conditions are hard to debug

Sometimes they can be detected by run-time debuggers
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OpenMP Basics

OpenMP Basics

Parallel Regions

Data sharing & scoping: shared, private, firstprivate, lastprivate,
default(shared or none)

Worksharing: for / do, sections, schedule

Reductions & loop shaping: reduction, collapse

Synchronization: barrier, critical, atomic, ordered (loop order), master
/ masked

Utilities: omp get num threads(), omp get thread num(), timing via
omp get wtime()

Good practices
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OpenMP Basics | Parallel Regions

Parallel Regions

This one is simple. Any code inside an OMP pragma is executed by
all threads

Don’t assume that OpenMP will handle special cases for you

If you have code that writes data to the file system inside an OMP
pragma; then you will write the data OMP NUM THREAD times.

Same for functions. A function called from inside an OMP pragma
will be called OMP NUM THREAD times.
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OpenMP Basics | Parallel Regions

Parallel Regions

C/C++

#pragma omp parallel

{

CODE

}

C/C++

#pragma omp parallel

{

FUNCTION <== NUM_THREAD

}

Fortran

!$omp parallel

CODE

!$omp end parallel

Fortran

!$omp parallel

FUNCTION <== NUM_THREAD

!$omp end parallel
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OpenMP Basics | Parallel Regions

Parallel Regions

Parallel Regions can also use clauses

#pragma omp parallel num threads(4) : Use 4 threads

#pragma omp parallel for if(condition) : Only start extra threads if
condition is TRUE. For example, if the size of an array is less than
10000 run serially. If not, start X number of Threads
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OpenMP Basics | Data Sharing

Data Sharing

The most important clauses in any Parallel Region are:

default(shared | none)
private(list)

firstprivate(list)

shared(list)

August 2025 OpenMP Basics: Data Sharing 45/128



OpenMP Basics | Data Sharing

Data Sharing

Reminder about variables (single variables, arrays, etc):

SHARED: All threads see the same copy (careful when
reading/writing)

PRIVATE: Every thread sees it’s own copy.
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OpenMP Basics | Data Sharing

Data Sharing

SHARED and PRIVATE variables important caveats:

When entering any PARALLEL section, PRIVATE variables are
uninitialised.

When exiting any PARALLEL section (even when you have another
one starting immediately after) private copies/variables are lost.

Any variable declared inside a PARALLEL section is PRIVATE.

Always, always, always use DEFAULT(none). It will save you time
and money.
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OpenMP Basics | Data Sharing

Data Sharing

SHARED and PRIVATE variables important caveats:

By default, global and static variables are SHARED, and loop indices
are private.

firstprivate: Like PRIVATE, but each thread’s copy is initialized with
the value of the original variable at entry

lastprivate: Like private, but after the parallel region finishes, the
variable in the original context is updated with the value from the last
iteration (or section) in the region
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OpenMP Basics | Data Sharing

Data Sharing

C/C++

int a, b=10;

#pragma omp parallel \

private(a) firstprivate(b)

{

// ’a’ is uninitialized

// private per thread;

// ’b’ is private per thread

// each initialized to 10.

}

Fortran

integer :: a, b

b = 10

!$omp parallel private(a

) &

!$omp& firstprivate(b)

! ’a’ is uninitialized

! private per thread

! ’b’ is private per

thread

! each initialized

to 10

!$omp end parallel
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OpenMP Basics | Work Sharing

Worksharing

Loops (for / do)

Schedules

Sections

Single

Master
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OpenMP Basics | Work Sharing

Loops (for / do)

Loops (for / do): Divides loop iterations among threads in a parallel region

C/C++

int N = 1000

#pragma omp parallel for

for (int i = 0; i < N; i++)

{

a[i] = b[i] + c[i];

}
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OpenMP Basics | Work Sharing

Loops (for / do)

Loops (for / do): Divides loop iterations among threads in a parallel region

Fortran

integer , parameter :: N = 1000

real :: a(N), b(N), c(N)

integer :: i

!$omp parallel do

do i = 1, N

a(i) = b(i) + c(i)

end do

!$omp end parallel do
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OpenMP Basics | Work Sharing

Schedules

Loops (for / do) support the following schedule types:

static: assigns fixed chunks in advance

dynamic: hands out chunks on the fly as threads finish

guided: starts with large chunks that shrink over time to balance
workload.

auto: the compiler/runtime decides.

runtime: use OMP SCHEDULE environment variable or a call to set
it.

chunk: we can define the size of the chunks.
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OpenMP Basics | Work Sharing

Schedules

If we know exactly what is going on; static is the fastest.

If we don’t know; but we know that there is variability, use dynamic.
But your data locality (if important) will disappear.

If we know nothing; then start with guided. More overhead.

We can also set the chunk size to help the compiler.
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OpenMP Basics | Work Sharing

Loops (for / do)

Use a dynamic schedule. Each thread will get 4 iterations. The first thread
that finishes, will get the next 4; until the end of the loop.

C/C++

int N = 1000

#pragma omp parallel for schedule(dynamic ,4)

for (int i = 0; i < N; i++)

{

a[i] = b[i] + c[i];

}
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OpenMP Basics | Work Sharing

Loops (for / do)

Use a dynamic schedule. Each thread will get 4 iterations. The first thread
that finishes, will get the next 4; until the end of the loop.

Fortran

integer , parameter :: N = 1000

real :: a(N), b(N), c(N)

integer :: i

!$omp parallel do schedule(dynamic ,4)

do i = 1, N

a(i) = b(i) + c(i)

end do

!$omp end parallel do
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OpenMP Basics | Work Sharing

Sections

Not all code runs in loops.

Allows different code blocks to run in parallel.

Each section block is executed by one thread.

When all sections complete, threads synchronize (unless nowait is
used).
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OpenMP Basics | Work Sharing

Sections

The two functions will run on two different threads. There is a block at
the end of the parallel section; waiting for both threads to finish.

C/C++

#pragma omp parallel sections

{

#pragma omp section

something_interesting_A ();

#pragma omp section

something_interesting_B ();

}

August 2025 OpenMP Basics: Work Sharing 58/128



OpenMP Basics | Work Sharing

Sections

The two functions will run on two different threads. There is a block at
the end of the parallel section; waiting for both threads to finish.

Fortran

!$omp parallel sections

!$omp section

call somethinginterestingA ()

!$omp section

call somethinginterestingB ()

!$omp end parallel sections
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OpenMP Basics | Work Sharing

Sections

Pure Sections only allow running 1 Thread per section.

If somethinginterestingA() needs 10x more CPU; then you are out of
luck

(until the advanced Session which talks about Tasks and Nested
Parallelism)
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OpenMP Basics | Work Sharing

Single

Single: Ensures a block is executed by only one thread (unspecified
which)

All other threads wait at an implicit barrier at the end of the single
region

Unless nowait is specified.

You can still use PRIVATE and FIRSTPRIVATE clauses.
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OpenMP Basics | Work Sharing

Single

C/C++

#pragma omp single

{

something_only_for_one ();

}

Fortran

!$omp single

call something_only_for_one ()

!$omp end single
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OpenMP Basics | Work Sharing

Master

The Master directive specifies that the enclosed code block is
executed only by the master thread (thread 0).

Unlike single, it has no implicit barrier at entry or exit, so other
threads skip it and continue without waiting.

It’s often used for setup, I/O, or coordination work that must be done
once without pausing the other threads.
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OpenMP Basics | Reductions

Reduction operations

Reduction operations

Collapse
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OpenMP Basics | Reductions

Reduction operations

Performs a parallel reduction on a variable across threads.

Each thread gets a private copy of var

Updates it with

At the end all copies are combined (reduced) into a single result.

Common operators include +, *, max:, min:, etc.

Why use a reduction?? Performance!
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OpenMP Basics | Reductions

Reduction operations

C/C++

int sum = 0;

#pragma omp parallel for reduction (+:sum)

for(int i=0; i<N; i++) {

sum += data[i];

}
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OpenMP Basics | Reductions

Reduction operations

Fortran

integer , parameter :: N = 100

integer :: i, sum

integer :: data(N)

!$omp parallel do reduction (+:sum)

do i = 1, N

sum = sum + data(i)

end do

!$omp end parallel do
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OpenMP Basics | Reductions

Collapse

When you use an omp parallel do/for you only parallelise the outer
loop.

With COLLAPSE we can tell the OpenMP library to treat the next
2, 3, 4 loops as one big loop and divide it to the available threads.
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OpenMP Basics | Reductions

Collapse

In this example OpenMP will create 3 threads to parallelise the outer loop.
This is obviously inefficient (in a machine with 128 cores; 125 will sit
IDLE).

C/C++

int i, j;

#pragma omp parallel for

for (i = 1; i <= 3; i++) {

for (j = 1; j <= 400; j++) {

printf("Thread %d: i=%d, j=%d\n",

omp_get_thread_num (), i, j);

}

}

August 2025 OpenMP Basics: Reductions 69/128



OpenMP Basics | Reductions

Collapse

Fortran

integer :: i, j

!$omp parallel do

do i = 1, 3

do j = 1, 400

print *, ’Thread ’, omp_get_thread_num (), ’i=’, i,

’j=’, j

end do

end do
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OpenMP Basics | Reductions

Collapse

In this example OpenMP will divide the 1200 iterations to all available
threads. Better usage of the 128 cores.

C/C++

int i, j;

#pragma omp parallel for collapse (2)

for (i = 1; i <= 3; i++) {

for (j = 1; j <= 400; j++) {

printf("Thread %d: i=%d, j=%d\n",

omp_get_thread_num (), i, j);

}

}
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OpenMP Basics | Reductions

Collapse

Fortran

integer :: i, j

!$omp parallel do collapse (2)

do i = 1, 3

do j = 1, 4

print *, ’Thread ’, omp_get_thread_num (), ’i=’, i,

’j=’, j

end do

end do

August 2025 OpenMP Basics: Reductions 72/128



OpenMP Basics | Synchronisation

Synchronisation

barrier: makes all threads in a team wait until every thread has
reached the barrier.

critical: ensures the enclosed code block is executed by only one
thread at a time.

atomic: makes a simple memory update (e.g. count++) atomic at
the hardware level.

lock: creates user managed lock(s)

ordered: Enforces the enclosed block to execute in sequential loop
order.

master: Specifies that only the master thread (thread 0) of the team
executes the block.

masked (OpenMP 5.0+): Runs a block on a subset of threads.
Without a filter, it behaves like master (only thread 0 executes).
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OpenMP Basics | Synchronisation

Barrier

#pragma omp barrier

All threads stop at this point until every thread in the team reaches it.

It ensures that no thread proceeds past the barrier before the others
have caught up.

Useful for synchronizing phases of work across threads.

August 2025 OpenMP Basics: Synchronisation 74/128



OpenMP Basics | Synchronisation

Barrier

The second function will only be called once all threads have finished
executing the first one.

C/C++

#pragma omp parallel

{

calculate_critical_mass ();

#pragma omp barrier

simulate_explosion ();

}
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OpenMP Basics | Synchronisation

Barrier

The second function will only be called once all threads have finished
executing the first one.

Fortran

!$omp parallel

call calculate_critical_mass ()

!$omp barrier

call simulate_explosion ()

!$omp end parallel
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OpenMP Basics | Synchronisation

Critical

#pragma omp critical [(name)]

Only one thread at a time can execute the block of code marked
critical.

Threads wait their turn to enter, preventing race conditions on shared
data.

This is straightforward but can become a bottleneck if the protected
code is slow.

Use this to protect updates to shared data when atomic cannot be
used.

August 2025 OpenMP Basics: Synchronisation 77/128



OpenMP Basics | Synchronisation

Critical

Sum will be updated correctly. DO NOT DO THIS. USE A REDUCTION!!

C/C++

#pragma omp parallel for

for ( int i = 0; i < Ni; i++ ) {

#pragma omp critical

sum += array[i];

}
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Critical

Sum will be updated correctly. DO NOT DO THIS. USE A REDUCTION!!

Fortran

!$omp parallel do

do i = 1, Ni

!$omp critical

sum = sum + array(i)

!$omp end critical

end do

!$omp end parallel do
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Atomic

#pragma omp atomic

Protects a single memory update so it happens without interference
from other threads.

It’s lighter weight than critical because it’s limited to simple
operations (e.g., increments, sums).

Ideal for fine-grained synchronization on shared variables
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Atomic

Sum will be updated correctly. DO NOT DO THIS. USE A REDUCTION!!

C/C++

#pragma omp parallel for

for ( int i = 0; i < Ni; i++ ) {

#pragma omp atomic

sum += array[i];

}
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Atomic

Sum will be updated correctly. DO NOT DO THIS. USE A REDUCTION!!

Fortran

!$omp parallel do

do i = 1, Ni

!$omp atomic

sum = sum + array(i)

!$omp end critical

end do

!$omp end parallel do
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Critical vs Atomic

Atomic uses hardware instructions

Atomic does not use lock/unlock on entering/exiting the line of code

Lower overhead
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Lock

You explicitly create and control a lock object with omp init lock(),
omp set lock(), and omp unset lock().

Locks give you more control over when and where mutual exclusion
happens.

They can protect complex or multiple code regions, but require
careful pairing of set/unset to avoid deadlocks.

Same functionality as a mutex/semaphore.

August 2025 OpenMP Basics: Synchronisation 84/128



OpenMP Basics | Synchronisation

Lock

C/C++

omp_lock_t myLock;

(void) omp_init_lock (& myLock);

#pragma omp parallel

{

(void) omp_set_lock (& myLock); // acquire lock

important_function ();

(void) omp_unset_lock (& myLock); // release lock

} // End of parallel region

(void) omp_destroy_lock (& myLock);
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Lock

Fortran

integer(kind=OMP_LOCK_KIND) :: myLock

call omp_init_lock(myLock)

!$omp parallel

call omp_set_lock(myLock) ! acquire lock

call important_function ()

call omp_unset_lock(myLock) ! release lock

!$omp end parallel

call omp_destroy_lock(myLock)
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Reality Check: Locks, Critical, Atomic

Critical sections serialise execution. They destroy scalability.

Locks serialise execution. They destroy scalability.

Atomic uses hardware instructions: CAS instructions.

CAS instructions still need to fetch data (sometimes from another
NUMA node)

CAS: Compare-and-swap

Fetching needs time.

Atomic sooner (or later) destroy scalability.

It’s better to re-think/re-write the algorithm to allow parallelisation.
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Ordered

For use inside a parallel for, it forces the enclosed code to run in
loop-iteration order.

Only one thread executes the ordered block at a time, and in the
correct sequence.

Handy when most work is parallel but a small part must happen in
strict order.
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Ordered

C/C++

#pragma omp for ordered

for (i=0; i<n; i++) {

#pragma omp ordered

work(i);

}
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Lock

Fortran

!$OMP DO ORDERED

DO I = 1,N

!$OMP ORDERED

CALL WORK(I)

!$OMP END ORDERED

END DO

!$omp end parallel do
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Master

#pragma omp master

The enclosed code is executed only by the master thread (thread 0).

Unlike single, it has no implicit barrier before or after, so other
threads skip it and keep going.

Useful for setup, teardown, or I/O handled by a single designated
thread.

Or for MPI operations. Usually, the MPI library requires the Master
thread to make MPI calls.
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Masked

#pragma omp masked

Similar to master, but lets you specify which thread(s) should execute
the region via a filter expression.

For example, filter(omp get thread num()==1) would make only
thread 1 run the block.

Other threads skip the block and can continue without waiting.

Gives more flexibility than master for designating work to a specific
thread in the team
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Utilities

omp get num threads() : How many threads we are using

Careful; will always return 1 if run outside a parallel section

omp get thread num() : Returns our Thread number
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Utilities

C/C++

#pragma omp parallel

{

CODE

}

C/C++

#pragma omp parallel

{

FUNCTION <== NUM_THREAD

}

Fortran

!$omp parallel

CODE

!$omp end parallel

Fortran

!$omp parallel

FUNCTION <== NUM_THREAD

!$omp end parallel
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Summary

Tips and Tricks

Performance

Resources
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Tips and Tricks

Creating and starting a Parallel section takes time.

The optimised code must be worth it (it must runs for at least for a
couple of seconds).

If the optimised code doesn’t always run long enough all the time; use
the IF clause.

NOWAIT can help; however, it can cause also cause race conditions.

CHUNKSIZE is important. It should be tuned. It can be changed at
RUNTIME (which is always helpful).
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Tips and Tricks

MASTER, SINGLE and MASKED are useful. However, MASTER is
the one with lowest overhead. SINGLE and MASKED require some
synchronisation.

However, if you don’t know beforehand which THREAD will reach the
directive first; best to use SINGLE. Most of the time this will be
quicker than waiting for the MASTER thread to arrive.
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Tips and Tricks

Never, ever, ever use default(shared).

Never, ever, ever have a parallel section without a default (most
implementations default to shared).
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Tips and Tricks

I found the section of my code that takes up most of the runtime ...

... but it’s a FOR/DO loop with hundreds lines of code!!!

How do I set the PRIVATE and SHARED variables??

You said to never use default(shared)!!
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Tips and Tricks

You need to put that code into a function.

Use the SCOPE attributes of C/C++ and Fortran and pass
everything as an argument to the function.

Everything else can be a local variable inside the function.

Test.

If everything works; start adding PARALLEL sections.
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Tips and Tricks

Sometimes; you will need to refactor your code. Either because it’s on
the verge of the standards or because it has already fallen off and it
compiles/works with a specific compiler and runs on a specific
hardware.
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Tips and Tricks

Handy and useful environment variables:

OMP WAIT POLICY=active : Tell the OpenMP runtime to spin
IDLE threads; instead of putting them to sleep.

OMP DYNAMIC=false : Tell the OpenMP runtime to allocate
exactly the number of threads you asked for.

OMP PROC BIND=true : Stop threads from migrating and
destroying data locality.
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Tips and Tricks

Modern debuggers support OpenMP (gdb, DDT, TotalView).

For Race Conditions you need other tools.

SUN Studio, Intel Inspector (or the Intel Studio), Valgrind DRD,
Clang ThreadSanitizer
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Tips and Tricks

Timers:

Don’t use clock() or other system timers. They don’t work well with
OpenMP.

”srun time myapplication.exe” will give you the correct overall
duration of your application.

Use omp get time(). It works perfectly with OpenMP.
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Performance

I’ve gone through your excellent training and optimised my code using
OpenMP. I got a 2% speedup!!

Sequential Code

Synchronisation

Scheduling / Idle Threads

Communication

Hardware resources
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Performance: Sequential Code

Anything that is not parallelised (outside PARALLEL section, inside
MASTER, SINGLE sections) runs sequentially.

Amdahl’s law2 states that the maximum speedup is limited by the
unparallelised code.

If exactly 50% of the work can be parallelized, the best possible
speedup is 2 times.

If 95% of the work can be parallelized, the best possible speedup is 20
times.

2https://en.wikipedia.org/wiki/Amdahllaw
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Performance: Sequential Code

Solutions:

Try to parallelise everything :-)

If you can’t, then understand the limitations of your code.
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Performance: Synchronisation

Whenever we synchronise; there is implicit communication between
the Threads.

Communication uses hardware resources (next slides); uses CPU time;
sometimes destroys data locality.

CRITICAL, ATOMIC, LOCKS are points where we lose performance.
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Performance: Synchronisation

Solutions:

Minimise barriers. You may need to refactor your code.

Use NOWAIT; but be careful.

Use ATOMIC rather than CRITICAL or LOCKS. But know that every
time you use it; you lose performance.
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Performance: Scheduling / Idle Threads

More often than not (always); some threads finish first and wait for
the others.

When they wait; they are IDLE. They are not doing anything helpful.

When multiple Threads reach a CRITICAL section; they start to wait.

Even worse, they have to talk to each other to pass through the
CRITICAL section one at a time.

Not only they wait and do nothing; they are actually using Hardware
Resource to talk to each other!!!
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Performance: Scheduling / Idle Threads

The wrong scheduling type or chunksize can have very bad effects.

C/C++

#pragma omp parallel for schedule(dynamic , 1)

for(int i=0; i < 50000000; i++) {

CODE

}

The OpenMP runtime will not be very happy about our choice of
scheduler and chunksize.
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Performance: Scheduling / Idle Threads

Solutions:

Use sensible SCHEDULE parameters. Experiment with different
schedulers.

Use sensible CHUNKSIZE values. Experiment with different values.

Too big CHUNKSIZE and you risk some THREADS finishing early
and wait.

Too small CHUNKSIZE and you will cause scheduling overheads and
synchronisation bottlenecks in the OpenMP runtime.

Ideally, we want all threads to finish at the same time.
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Performance: Communication
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Performance: Communication
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Performance: Communication

Accessing DATA from Memory is really slow (compared to CACHE).

Really slow means hundreds to thousand times slower.

If we need to access memory from a remote NUMA node; that’s even
worse.

And that’s only about reading.

Every READ (and WRITE) operation goes through the Cache
Coherency Mechanism.
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Performance: Communication

When we write (modify) data; things become really expensive. When a
THREAD (running on CPU#1) writes some data:

The Cache Coherency fetches the data (from wherever) and brings it
to the local CACHE (L3, L2 or L1).

All other copies of that memory are invalidated on all the other
CACHEs of all the other CPUs (to avoid reading stale data).

If another Thread on another CPU wants to read the same data; the
Cache Coherency Mechanism needs to fetch and propagate that
Memory location to the local CACHE (L3, L2 or L1) of that CPU.

Imagine if our Threads write to some memory that other Threads
need to read. Say goodbye to any performance improvements.
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Performance: Communication

Solutions (kind of):

We need to use Data Affinity!

This means that we should (as much as possible) access
(READ/WRITE) the same data with the same THREAD

Try to use large contiguous memory areas (don’t update single INT8)

We can then use CACHEd data (ten to hundred times faster than
local memory)

Use OMP PROC BIND=true to help pin the threads.
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Performance: Communication

More problems with NUMA (most systems):

Most Operating Systems employ the first touch policy.

The first touch policy essentially tells the Memory Subsystem to place
memory closest to the THREAD (or PROCESS) that asked for the
memory.

That makes sense for sequential applications. The memory is now in
the local NUMA node and hopefully in the CACHE as well.

It doesn’t work for parallel applications.

Especially if initialisation is done by the MASTER thread. Everything
is now in the MASTER thread NUMA node; and everyone else have
to wait for the data to trickle across.
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Performance: Communication

Solutions (kind of):

For OpenMP (and parallel applications in general); it’s better to
initialise in a parallel section.

Try to keep the data local. Try not to change the loop iteration
forcing data to migrate to other CPUs (or even worse other NUMA
nodes).

Use numactl (on Linux) to change the NUMA policy.
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Performance: Communication

More problems:

Memory is written in 4KB and 16KB pages.

Some (most) systems use huge pages (2MB, 4MB, 1GB).

Operating Systems like larger pages because they have to handle less
pages overall.

Less TLB (Translation Lookaside Buffer) misses, mean higher memory
access.

However, if our stride is more than the page size; we will go through
the huge pages like a knife through butter.
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Performance: Communication

We write an int8 at i*2MB+1byte :

The TLB updates the mapping of the virtual page to the physical
memory frame.
The CPU fetches the 64 bytes cache line containing the target byte
into L1 (read-for-ownership), modifies 1 byte, and later evicts the
dirty line.
For a 1 byte update; we get a 64 bytes read traffic and 64 bytes write
traffic (assuming that each CACHE line size is 64 bytes).
If the same CACHE line was in any other CPU; it needs to get
invalidated.
Since we never use this line again; we don’t get the benefits of the
CACHE system.
Soon we start incurring extra costs; because the TLB misses will start
to increase.
Imagine this scenario with tens or hundreds of THREADs running at
the same time.
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Performance: Communication

And to give a name to this problem: False Sharing.

We discussed how CACHEs, CACHE line size Memory and the Cache
Coherency Mechanism work.

If we have THREADs updating a single int8, the whole CACHE line
get’s invalidated.

What if we have a SHARED array of int8 counters and each
THREAD updates it’s own index.

C/C++

counter_array[omp_get_thread_num ()]++;
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Performance: Communication

The previous code looks innocent enough.

However, each update of an index; will invalidate the surrounding 64
bytes.

The surrounding 64 bytes are 64 entries which will need to start their
journey around the NUMA node(s).

Invalidating all copies. And fetching the new value from the
THREAD that did the original update.

The next THREAD comes along and updates it’s copy (which has
been just fetched from who knows where).

Once the update takes place, all the other copies will get invalidated
again.

Say a big goodbye to your memory bandwidth and to performance.
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Performance: Hardware resources

Memory bandwidth / Caches:

As we have seen; memory bandwidth (which is limited) can be
exhausted really easily.

False sharing.

Not using Data Locality.

Not using Data Affinity.

Most systems share a level of CACHE (usually L3)

Using multithreaded applications, CPUs fight for the same resource.
Sometimes, using the whole resource for themselves.
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Performance: Hardware resources

CPU instructions and instructions CACHEs are not infinite.

For compute intensive codes; they can run out and THREADs have to
wait.

On the other hand, when THREADs wait for memory resources; even
compute intensive codes can run happily.

Don’t oversubscribe (unless you are testing).

Using more THREADs than COREs destroys data locality and is
really slow.

Using more THREADs than COREs is a nice test for your
implementation. Sometimes, it makes hard to detect race conditions
more prominent.
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Resources

OpenMP: https://openmp.org

OpenMP:
https://www.openmp.org/resources/openmp-presentations/

Varis HPC centers and documentation (EPCC, HLRS, LLNL, others)
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Questions

Thank you for your attention.
Questions?
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