
Submiing OpenMP Jobs on SLURM
Training Series - Course 2 "Introduction to HPC"

Nikolaos Triantafyllis (ntriantafyl@admin.grnet.gr)

26/09/2025 Training Series - Course 2 "Introduction to HPC"

What is HPC?

● High-Performance Computing (HPC) is
the ability to perform sophisticated
calculations at high speeds .

● An HPC cluster consists of hundreds or
thousands of compute servers,
so-called nodes. The nodes in each
cluster work in parallel with each other.

●
HPC solves large problems in science,
engineering, or business, that are too
complex for a PC. On typical PC it might
take e.g. hours, days, weeks to perform
the computations, but if you use an
HPC Cluster, it might only take minutes,
hours, days, respectively.

image source: hps://miro.medium.com/v2/resize:fit:720/format:webp/1*zOQ3LwOBQc9xnW9Pzm7U5A.png (regenerated)

26/09/2025 Training Series - Course 2 "Introduction to HPC"

GRNET HPC - ARIS
(hps://www.hpc.grnet.gr)
Supports the Greek and global research community with
advanced HPC infrastructure for scientific exploration.

https://www.hpc.grnet.gr

26/09/2025 Training Series - Course 2 "Introduction to HPC"

Simple Linux Utility for Resource
Management

4/9/2025

software stack that runs on HPC infrastructure and operates resource
management, job scheduling and accounting

Image source: Esquema de Manejador de Recursos de LSF(Iqbal, Gupta, & Fang, 2005)

26/09/2025 Training Series - Course 2 "Introduction to HPC"

Typical
HPC/SLURM
infrastructure

● User executes SLURM client
commands such as job
submissions (sbatch) [Blue
area]

● SLURM handles the received
jobs and orchestrates
operations [Purple area]

● SLURM passes user’s jobs to
compute nodes [Yellow area]

● User receives job’s results
back to their working dir

Image source: hps://slurm.schedmd.com/arch.gif

26/09/2025 Training Series - Course 2 "Introduction to HPC"

A Job’s Life Cycle

1. Submission: User access HPC
and submits a job using sbatch

2. Pending (PD): Job waits in queue
for resources to become available

3. Scheduling: SLURM assigns
resources based on priority and
availability

4. Running (R): Job executes on
allocated resources

5. Completion (CD): Job finishes
successfully or fails

6. Failure/Preemption (F)/(PR): Job
may fail due to errors or get
preempted by higher-priority jobs

7. Cleanup: SLURM releases
resources, logs results

Image source: hps://cos.twcc.ai/SYS-MANUAL/uploads/upload_8ead0a8bf1bd623e1a1c2ed8ab609677.png

26/09/2025 Training Series - Course 2 "Introduction to HPC"

SLURM Useful Commands
• sacct is used to report job accounting information

• sbatch is used to submit a job script for later execution

• scancel is used to cancel a pending or running job

• sinfo reports the state of partitions and nodes managed by SLURM

• squeue reports the state of jobs

• srun usually is executed inside the job script to run apps after job submission

More info: hps://slurm.schedmd.com

https://slurm.schedmd.com

26/09/2025 Training Series - Course 2 "Introduction to HPC"

HPC Modules
Managing Environment with Modules

• Modules control environment variables such as PATH, LD_LIBRARY_PATH
• Use module command to load, unload, and list modules

Module Commands
• module avail: List all available modules
• module load <module>: Load a module
• module unload <module>: Unload a module
• module list: List loaded modules
• module purge: Remove all modules

Example of loading a module with a certain version:
> module load gnu/15.2
> gcc --version

26/09/2025 Training Series - Course 2 "Introduction to HPC"

SLURM commands in action
● $ sbatch script.sh

Submied batch job 12345

● $ squeue -j 12345
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
12345 batch my_job user1 PD 0:00 20 (Resources)

● $ squeue -j 12345
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
12345 batch my_job user1 R 1:20 20 node[01-20]

● $ sacct -j 12345 --format=JobID,JobName,Partition,Account,AllocCPUS,State,ExitCode
JobID JobName Partition Account AllocCPUS State ExitCode
------------ ---------- ---------- ---------- ---------- ----------

--
12345 my_job compute my_acc 4 COMPLETED 0:0
12345.batch batch compute my_acc 4 COMPLETED 0:0
12345.0 task1 compute my_acc 2 COMPLETED 0:0
12345.1 task2 compute my_acc 2 COMPLETED 0:0

● $ scancel 12345

26/09/2025 Training Series - Course 2 "Introduction to HPC"

HPC Usage Report (ARIS-based)
$ mybudget
===
Core Hours Allocation Information for account : testproj
===
Allocated Core Hours : 2400000.00
Consumed Core Hours : 15.00
Percentage of Consumed : 0.00
===

$ myreport
-- ----------- ----------
--
Cluster/Account/User Utilization 2015-04-07T00:00:00 - 2015-10-07T23:59:59 (15897600 secs)
Time reported in CPU Hours
-- ------------------ -----
 Cluster Account Login Proper Name Used Energy
--------- --------------- --------- --------------- ---------- ---------- ----------- ----------- ---------
 aris testproj username User Name 15 110

26/09/2025 Training Series - Course 2 "Introduction to HPC"

SLURM #SBATCH directives

4/9/2025

Command Example Value Description

#SBATCH --account myaccount Specifies which account is associated
with.

#SBATCH --partition compute Specifies which partition/queue to
use.

#SBATCH --nodes 1 Always use a single node for OpenMP
jobs.

#SBATCH --ntasks-per-node 1 Number of tasks to launch per node
(set to 1 for pure OpenMP jobs).

#SBATCH --cpus-per-task 20 Number of CPU threads per task
(matches OMP_NUM_THREADS).

#SBATCH --time 01:00:00 Maximum wall time for the job.

#SBATCH --mem 56G Total memory requested for the node.

26/09/2025 Training Series - Course 2 "Introduction to HPC"

SLURM Tutorial
under containers

● In this tutorial you will deploy a typical
HPC infrastructure using the SLURM
resource manager under containers

● Submit OpenMP jobs:
○ A “Hello world” app,
○ A Monte Carlo PI estimation,
○ Train multiple Random Forest

Regressor models simultaneously

● View example’s output

26/09/2025 Training Series - Course 2 "Introduction to HPC"

HPC/SLURM
facility

● 5 containers:
○ 1 MySQL Server instance to store

SLURM accounting
○ 1 node as the DB controller
○ 1 login node as the SLURM

controller and user’s login
endpoint

○ 2 compute nodes for
calculations

● Each compute node contains 2 CPUs
of 2 cores each

● All 4 nodes operate Debian-based
Linux OS

26/09/2025 Training Series - Course 2 "Introduction to HPC"

Prerequisites (for WINDOWS users)

1. Download Docker Desktop from:
hps://docs.docker.com/desktop/i
nstall/windows-insta ll

2. Follow step-by-step instructions here:
hps://www.linkedin.com/pulse/st
ep-guide-how-install-docker-windo
ws-1011-shashank-abhishek

https://docs.docker.com/desktop/install/windows-install
https://docs.docker.com/desktop/install/windows-install
https://www.linkedin.com/pulse/step-guide-how-install-docker-windows-1011-shashank-abhishek
https://www.linkedin.com/pulse/step-guide-how-install-docker-windows-1011-shashank-abhishek
https://www.linkedin.com/pulse/step-guide-how-install-docker-windows-1011-shashank-abhishek

26/09/2025 Training Series - Course 2 "Introduction to HPC"

1. Use default options in
installation

2. Your PC must be restarted

3. If docker engine does not
start, you might need to
close the Docker Desktop
and run it in
administration mode Docker Engine must run

(GREEN color)

Prerequisites (for WINDOWS users)

26/09/2025 Training Series - Course 2 "Introduction to HPC"

Prerequisites (for WINDOWS users)

1. Make sure that Docker Desktop is initiated (GREEN color)
2. Download the Docker recipe to setup the virtual infrastructure of SLURM under containers:

hps://github.com/nikosT/slurm-docker-cluster/archive/refs/heads/master.zip
3. Extract content at some folder e.g. C:\...\slurm-docker-cluster-master
4. Open Windows PowerShell (in search buon type PowerShell)
5. In Windows PowerShell terminal type:

cd C:\...\slurm-docker-cluster-master
powershell -ExecutionPolicy Bypass
. .\alias.ps1 # load environment
wstart # start the virtual cluster (~2.5 GB images’ size)
When wstart is completed, you should view this

6. Then, type:
ssh slurm@slurmctld # access the login node

7. cd openmp_examples # change dir to the OpenMP examples
8. sbatch <file>.sh # submit your OpenMP job
9. ls # view the outputs of your submission

10. exit # logout from login node
11. wstop # stop the virtual cluster

https://github.com/nikosT/slurm-docker-cluster/archive/refs/heads/master.zip

26/09/2025 Training Series - Course 2 "Introduction to HPC"

Prerequisites (for LINUX users)

 In terminal type:

sudo apt-get install git docker docker.io docker-compose docker-compose-v2 # install docker

git clone hps://github.com/nikosT/slurm-docker-cluster # get docker recipe

cd slurm-docker-cluster # change dir to the appropriate one

chmod -R 777 slurm #set appropriate permissions to the folder

source alias # load environment

wstart # start the virtual cluster (~2.5 GB images’ size)

exit # logout from login node

wstop # stop the virtual cluster

https://github.com/nikosT/slurm-docker-cluster

26/09/2025 Training Series - Course 2 "Introduction to HPC"

• If you’ve run it before, make sure to delete the related volumes and images to start with a clean setup.

In terminal type:

docker volume rmi <image_id> #intergallactic/slurm-docker-main
docker volume rm slurm-docker-cluster_etc_munge
docker volume rm slurm-docker-cluster_etc_slurm
docker volume rm slurm-docker-cluster_slurm_jobdir
docker volume rm slurm-docker-cluster_var_lib_mysql
docker volume rm slurm-docker-cluster_var_log_slurm

• If your computer has fewer than 8 cores, you will need to modify the /etc/slurm/slurm.conf file from within

the container (ssh root@slurmctld) and then run wstop && wstart.

– e.g. seing 4 cores: NodeName=c[1-2] CPUs=4 Sockets=2 CoresPerSocket=2 ThreadsPerCore=1

RealMemory=2000 State=UNKNOWN # remember DefMemPerCPU=500

Prerequisites (for WINDOWS/LINUX users)

26/09/2025 Training Series - Course 2 "Introduction to HPC"

#1 Hello OpenMP World example
Run in terminal:

ssh slurm@slurmctld
$> cd openmp_examples
$> gcc -fopenmp -O3 openmp_hello.c -o openmp_hello
$> sbatch run_openmp_hello.sh

View run_openmp_hello.sh file:
#!/bin/bash
#SBATCH --job-name=my_openmp_hello # Job name
#SBATCH --output=my_openmp_hello_%j.out # Output file name (%j expands to jobID)
#SBATCH --error=my_openmp_hello_%j.err # Error file name (%j expands to jobID)
#SBATCH --partition=normal # Partition name
#SBATCH --nodes=1 # Number of nodes
#SBATCH --ntasks=1 # Number of tasks
#SBATCH --ntasks-per-node=1 # Number of tasks per node
#SBATCH --cpus-per-task=8 # Number of tasks per node
#SBATCH --time=00:01:00 # Time limit (HH:MM:SS)
export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
$HOME/openmp_examples/openmp_hello

26/09/2025 Training Series - Course 2 "Introduction to HPC"

#1 Hello OpenMP World example
Run in terminal:

ssh slurm@slurmctld
$> cd openmp_examples
$> gcc -fopenmp -O3 openmp_hello.c -o openmp_hello
$> sbatch run_openmp_hello.sh

View my_openmp_hello_<job_id>.out file:
Hello from thread 0 of 8 on c1 (pid: 55) | CPU: 10 | Socket: 0
Hello from thread 2 of 8 on c1 (pid: 55) | CPU: 9 | Socket: 0
Hello from thread 6 of 8 on c1 (pid: 55) | CPU: 1 | Socket: 0
Hello from thread 1 of 8 on c1 (pid: 55) | CPU: 2 | Socket: 0
Hello from thread 3 of 8 on c1 (pid: 55) | CPU: 11 | Socket: 0
Hello from thread 7 of 8 on c1 (pid: 55) | CPU: 8 | Socket: 0
Hello from thread 4 of 8 on c1 (pid: 55) | CPU: 7 | Socket: 0
Hello from thread 5 of 8 on c1 (pid: 55) | CPU: 5 | Socket: 0

26/09/2025 Training Series - Course 2 "Introduction to HPC"

Monte Carlo
Method for
Approximating π1. Estimate π by simulating random

points in a square (r=1) enclosing a
quarter circle.

2. Generate N random points (x, y)
where 0 ≤ x, y ≤ 1.

3. Count points inside the quarter
circle: x² + y² ≤ 1.

4. Compute: Ratio = Points inside circle
/ N

5. Approximate: π ≈ 4 × Ratio

More points → closer approximation to π.

Code:
hps://github.com/nikosT/slurm-docker
-cluster/blob/main-pull/slurm/openmp_
examples/montecarlo.c

Image source: hps://en.wikipedia.org/wiki/File:Pi_monte_carlo_all.gif

https://github.com/nikosT/slurm-docker-cluster/blob/main-pull/slurm/openmp_examples/montecarlo.c
https://github.com/nikosT/slurm-docker-cluster/blob/main-pull/slurm/openmp_examples/montecarlo.c
https://github.com/nikosT/slurm-docker-cluster/blob/main-pull/slurm/openmp_examples/montecarlo.c

26/09/2025 Training Series - Course 2 "Introduction to HPC"

Monte Carlo
Method for
Approximating π Thread 1

Thread 2

Thread 3

Use OpenMP to split the workload
into parallel chunks.

1. Estimate π by simulating random
points in a square (r=1) enclosing a
quarter circle.

2. Generate N random points (x, y)
where 0 ≤ x, y ≤ 1.

3. Count points inside the quarter
circle: x² + y² ≤ 1.

4. Compute: Ratio = Points inside circle
/ N

5. Approximate: π ≈ 4 × Ratio

More points → closer approximation to π.

Code:
hps://github.com/nikosT/slurm-docker
-cluster/blob/main-pull/slurm/openmp_
examples/montecarlo.c

https://github.com/nikosT/slurm-docker-cluster/blob/main-pull/slurm/openmp_examples/montecarlo.c
https://github.com/nikosT/slurm-docker-cluster/blob/main-pull/slurm/openmp_examples/montecarlo.c
https://github.com/nikosT/slurm-docker-cluster/blob/main-pull/slurm/openmp_examples/montecarlo.c

26/09/2025 Training Series - Course 2 "Introduction to HPC"

#2 Monte Carlo PI OpenMP
example
Run in terminal:

ssh slurm@slurmctld
$> cd openmp_examples
$> gcc -fopenmp -O3 montecarlo.c -o montecarlo
$> sbatch run_montecarlo.sh

View run_montecarlo.sh file:
#!/bin/bash
#SBATCH --job-name=my_montecarlo # Job name
#SBATCH --output=my_montecarlo_%j.out # Output file name (%j expands to jobID)
#SBATCH --error=my_montecarlo_%j.err # Error file name (%j expands to jobID)
#SBATCH --partition=normal # Partition name
#SBATCH --nodes=1 # Number of nodes
#SBATCH --ntasks=1 # Number of tasks
#SBATCH --ntasks-per-node=1 # Number of tasks per node
#SBATCH --cpus-per-task=4 # Number of tasks per node
#SBATCH --time=00:01:00 # Time limit (HH:MM:SS)
export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
$HOME/openmp_examples/montecarlo

26/09/2025 Training Series - Course 2 "Introduction to HPC"

#2 Monte Carlo PI OpenMP
example
Run in terminal:

ssh slurm@slurmctld
$> cd openmp_examples
$> gcc -fopenmp -O3 montecarlo.c -o montecarlo
$> sbatch run_montecarlo.sh

View my_montecarlo_<job_id>.out file:
Thread 0: Time = 2.028424 seconds
Thread 3: Time = 2.030026 seconds
Thread 1: Time = 2.031826 seconds
Thread 2: Time = 2.039390 seconds

Estimated value of π: 3.141605
Total execution time: 2.039475 seconds
Number of threads used: 4

26/09/2025 Training Series - Course 2 "Introduction to HPC"

Random Forest Regressor Tuning
• RandomForestRegressor: Scikit-learn ensemble model averaging multiple decision trees for robust regression

predictions. Reduces overfiing by combining diverse trees for continuous numerical outputs.
• Hyperparameter Tuning:min_samples_leaf (int/float, default=1): Minimum samples required at a decision

tree’s leaf node.
• Tuning Process:

– Trains model with RandomForestRegressor(n_jobs=1, min_samples_leaf=msf)
– Fits on training data with model.fit(Xtrain, ytrain)
– Predicts on test data with model.predict(Xtest)
– Evaluates performance using Pearson correlation np.corrcoef(ytest, pred)[0,1]

• Parallel Execution:
– Splits tuning of 40 min_samples_leaf values (1–40) across 4 processes.
– Each process handles 10 values:

• Process 1: [1–10]
• Process 2: [11–20]
• Process 3: [21–30]
• Process 4: [31–40]

• Code: hps://github.com/nbakas/HighPerformanceComputing/blob/main/07-ScalabilityTuningRF.py

https://github.com/nbakas/HighPerformanceComputing/blob/main/07-ScalabilityTuningRF.py

26/09/2025 Training Series - Course 2 "Introduction to HPC"

#3 RF Tuning Multi-Process example
Run in terminal:

ssh slurm@slurmctld
$> cd openmp_examples
$> sbatch run_tuning.sh

View run_tuning.sh file:
#!/bin/bash
#SBATCH --job-name=my_tuning # Job name
#SBATCH --output=my_tuning_%j.out # Output file name (%j expands to jobID)
#SBATCH --error=my_tuning_%j.err # Error file name (%j expands to jobID)
#SBATCH --partition=normal # Partition name
#SBATCH --nodes=1 # Number of nodes
#SBATCH --ntasks=4 # Number of tasks per node
#SBATCH --cpus-per-task=1 # Number of tasks per node
#SBATCH --time=00:01:00 # Time limit (HH:MM:SS)

$HOME/openmp_examples/ScalabilityTuningRF.py

26/09/2025 Training Series - Course 2 "Introduction to HPC"

#3 RF Tuning Multi-Process example
Run in terminal:

ssh slurm@slurmctld
$> cd openmp_examples
$> sbatch run_tuning.sh

View my_tuning_<job_id>.out file:
Number of existing processes: 4, Number of used processes: 4
Process 3 started
Process 3, min_samples_leaf: 31, Pearson: 0.7677726194945116
…
Process 2 started
Process 2, min_samples_leaf: 21, Pearson: 0.7940901197229328
…
Process 1 started
Process 1, min_samples_leaf: 11, Pearson: 0.8453098573872617
…
Process 0 started
Process 0, min_samples_leaf: 1, Pearson: 0.9060490977747907
…
Parallel Execution Time: 2250.66590 milliseconds

26/09/2025 Training Series - Course 2 "Introduction to HPC"

Homework
Familiarization with SLURM

Try accessing resources interactively in SLURM:

1. Open 2 terminals, change to the slurm-docker-cluster-master directory and load the environment
2. From both terminals access the login node (slurmctld), then:
3. In Terminal #1, type: localhost (what’s the node’s name and why?)
4. In Terminal #1, type: srun --nodes=1 --time=00:10:00 --pty bash (what do you think this command does?)
5. In Terminal #1, type: localhost (what’s the node’s name and why?)
6. In Terminal #2, type: squeue (is there any job running?)
7. In Terminal #1, type: exit (what happened?)
8. In Terminal #2, type: squeue (is there any job running?)
9. In Terminal #1, type: localhost (what’s the node’s name and why?)

Any Questions?

