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https://plasma-pepsc.eu/



Outline
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The Plasma-PEPSC EuroHPC CoE 

Vision

Four Plasma Simulation Codes

Our Approach

Conclusions
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Call: HORIZON-EUROHPC-JU-2021-COE-01 - Centres of 
Excellence preparing applications in the Exascale era
Duration: 4 Years. It started on Jan.1, 2023
Budget: 7.9M€

Partners:

• Academia: KTH (Coordinator), UoH, UL, TUM
• High-performance computing centers: BSC, PDC at 
KTH, and MPCDF at MPG.

• Research institutes and laboratories: IPP MPG, IPP 
CAS, FORTH, HZDR

• Industry: SIPEARL

Website: https://plasma-pepsc.eu/
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Plasma-PEPSC Vision:
Pushing Flagship Plasma Simulation Codes to Tackle 

Exascale-Enabled Grand Challenges via Performance 

Optimization and Codesign

Fusion energy

Plasma Accelerators

Space Physics

2 codes (BIT1, GENE) focus on simulations during the 
fusion energy production in the tokamaks

1 code (PIConGPU) focuses on the modelling of 
Plasma Accelerators → useful for 
medical applications (e.g. diagnostics, radiotherapy) 
instead of state of the art accelerators​

1 code (Vlasiator) focuses on the modelling of the 
entire earth magnetosphere and interaction with 
plasma from the sun → useful for space 
weatherprediction and understanding plasma 
processes
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Plasma-PEPSC Flagship Codes
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https://github.com/ComputationalRadiationPhysics/picongpu

https://github.com/fmihpc/vlasiator

https://genecode.org/

https://repo.tok.ipp.cas.cz/tskhakaya/bit1
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Name Location Peak Performance More info

JUPITER Forschungszentrum Jülich campus in 
Germany and operated by the Jülich 
Supercomputing Centre.

Expected 1 ExaFLOP. To become the first 
Europe’s Exascale supercomputer

LUMI Kajaani, Finland, hosted by CSC – IT Center 
for Science

539.13 petaflops https://lumi-
supercomputer.eu/

LEONARDO CINECA datacenter in Bologna, Italy 315.74 petaflops https://leonardo-
supercomputer.cineca.eu/

MARENOSTRUM 5 Hosted by BSC-CNS in Barcelona, Spain 314 petaflops https://www.bsc.es/maren
ostrum/marenostrum-5

MELUXINA Hosted by LuxProvide in Bissen, Luxembourg 18.29 petaflops https://www.luxprovide.lu
/meluxina/

KAROLINA Hosted by IT4Innovations National 
Supercomputing Center located in Ostrava, 
Czechia

12.91 petaflops https://docs.it4i.cz/karolin
a/hardware-overview/

DISCOVERER Located in Sofia, Bulgaria hosted by hosted 
by Sofia Tech Park.

5.94 petaflops https://docs.discoverer.bg/
resource_overview.html

VEGA Vega is a petascale EuroHPC supercomputer 
located in Maribor, Slovenia. It is supplied 
by Atos, based on the BullSequana 
XH2000 supercomputer and hosted by IZUM.

10.05 petaflops https://doc.vega.izum.si/g
eneral-spec/

DEUCALION Located in Guimarães, Portugal. Deucalion is 
hosted by FCT and managed by CNCA.

9.76 petaflops https://docs.macc.fccn.pt/
support

https://www.fz-juelich.de/de
https://www.fz-juelich.de/de
https://www.fz-juelich.de/de/ias/jsc
https://www.fz-juelich.de/de/ias/jsc
https://www.csc.fi/
https://www.csc.fi/
https://www.csc.fi/
https://www.csc.fi/
https://www.it4i.cz/en
https://www.it4i.cz/en
https://sofiatech.bg/en/
https://www.izum.si/en/hpc-en/
https://www.izum.si/en/home/
https://www.fct.pt/en/
https://www.incd.pt/


Five Technical WPs
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WP1 - Plasma Simulations – 
Codes and Grand Challenges 

WP2 - Co-design of Plasma Simulation 
Codes with the European Processor and 
Accelerator

• EPI Processor
• EPI Accelerator
• Quantum Computing

WP3 - Algorithms and Libraries for 
Extreme-Scale Plasma Simulations

• MPI
• Load-balancing
• Resilience & Fault-tolerance

WP4 - Extreme Data Analytics for 
Plasma Simulations

• Parallel I/O
• In-situ data analysis
• Compression

WP5 - Accelerated Plasma Simulations 
on Heterogeneous Systems

• Redesigning Algorithms, Porting, and 
Optimization for Accelerators 

• Application Data Placement and 
Migration for Heterogeneous Memories 



Methodology and BIT1 
showcase
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Methodology that we follow

• Analyse the code and figure out the hotspots:
• Run the code with profiling tools and find the most time consuming 

parts

• Extract the most time consuming parts out of the application’s 
code and optimize them

• For example run one of the time consuming functions in isolation and 
optimize it in isolation

• Port the extracted parts back to the application and run the 
entire code
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A case study: BIT1
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BIT1 overview

• BIT1 is an MPI Particle-In-Cell 
(PIC) application that simulates 
plasma behavior in the tokamak 
divertor such as in the ITER 
fusion device

• PIC: a computational technique that 
models plasma

• After the BIT1 initialization there is 
an iterative process that performs 
the simulation the interactions 
between plasma and the walls 
within the tokamak​
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BIT1 initialization 

Plasma density calculator

Field solver

Particle collisions

Particle mover

Particle Arranger and wall 
interaction



Step1: Analysis

• gprof: reports frequently 
used functions

• Maqao: reports hotspots and 
their coverage in execution 
time
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arrj(): particle arrangement
move0()/moveb():particle mover
bincc_dspf(): binary collision operator

Code Function Coverage%

arranger.c: 33-134 arrj 36.93%

prof_mpi.c: 63-66 avq_0 22.36%

mover.c: 145-146 move0 20.24%

mover.c: 177-178 nmove 9.98%

pflmv_mpi.c: 19-20 accum_mpi 0.11%

prof_mpi.c: 43-44 avq_mpi 0.06%

arranger.c: 20-21 arrj 0.06%

[1] J. J. Williams et al. "Leveraging HPC Profiling & Tracing Tools to Understand the Performance of Particle-in-Cell Monte Carlo Simulations." Euro-Par 2023: Parallel 
Processing Workshops: Euro-Par 2023 International Workshops, Limassol, Cyprus, August 28–September 1, 2023, Revised Selected Papers, Part I, LNCS 14351



Step 2: Extraction and optimization (OpenMP)

• Based on the analysis of the 
previous step we extract the 
mover function

• Parallelization of loops with 
OpenMP (work of KTH, CAS, 
UL)​

• The loop iterations are split 
among the cores of each 
node to exploit the full node 
for each MPI rank

2025-10-08 Plasma-PEPSC – Plasma Exascale-Performance Simulations CoE 15[1] J. J. Williams, et al. “Optimizing BIT1, a Particle-in-Cell Monte Carlo Code, with OpenMP/OpenACC and GPU Acceleration.” 24th International Conference on 
Computational Science, Málaga, Spain, July 2-4, 2024, Part I, LNCS 14832. Springer Nature.



Step 2: Extraction and optimization (EPAC 1.5)

2025-10-08 Plasma-PEPSC – Plasma Exascale-Performance Simulations CoE 16

• gvl: granted vector length has to be set

• The loop runs with step gvl because it operates on gvl elements at a time

• For each instruction we need to load the data to vector registers first

• If the total loop iterations originally is not a multiple of gvl, we perform the rest computations on gvl_rem elements

for(i = 0; i<np[j]; i++){
    sub_a = a[j+1] – a[j];
    atemp = a[j] + x[j][i] * sub_a;
    …
}

unsigned long gvl = __builtin_epi_vsetvlmax(__epi_e32, __epi_m1);
a_v = __builtin_epi_vbroadcast_2xf32(a[j], gvl);
a1_v = __builtin_epi_vbroadcast_2xf32(a[j+1], gvl);
for(i = 0; i<np[j] – gvl; i+=gvl)
{
    atemp_v = __builtin_epi_vload_2xf32(&x[j][i], gvl);
    a_v = __builtin_epi_vload_2xf32(&a[j], gvl);
    sub_a_v = __builtin_epi_vfsub_2xf32(a1_v, a_v, gvl);
    atemp_v = __builtin_epi_vfmul_2x_f32(atemp_v, sub_a_v, gvl);
    atemp_v = __builtin_epi_vfadd_2xf32(atemp_v, a_v, gvl);
    …
}
//The remaining vector length:
gvl_rem = __builtin_epi_vsetvli(np[j][i]-1, __epi_e32, __epi_m1);
atemp_v = __builtin_epi_vload_2x_f32(&x[j][i], gvl_rem);
sub_a_v = __builtin_epi_vfsub_2xf32(a1_v, a_v, gvl_rem);
atemp_v = __builtin_epi_vfmul_2x_f32(atemp_v, sub_a_v, gvl_rem);
atemp_v = __builtin_epi_vfadd_2xf32(atemp_v, a_v, gvl_rem);
…

Vector setup 
instructions



Step 3: Port back and evaluation (OpenMP)

• Improving total 
simulation 
performance by 
increasing intra-node 
parallelism (work of 
KTH, CAS, UL)

• Up to 37.5% speedup
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[1] J. J. Williams et all. “Accelerating Particle-in-Cell Monte Carlo Simulations with MPI, OpenMP/OpenACC and Asynchronous Multi-GPU 
Programming”. Journal of Computational Science. Accepted For Publication. 



Step 3: Port back and evaluation (EPAC 1.5)

• Improving total 
simulation time by 
taking advantage of 
the vector unit of the 
EPAC 1.5 chip

• Achieved close to 2x 
speedup for 2 MPI 
ranks
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Conclusions • We are a EuroHPC center of excellence 
for Plasma simulations at Exascale

• Four lighthouse plasma codes: BIT, 
GENE, PIConGPU, and Vlasiator

• Addressing challenges at exascale: 
software engineering at scale, 
extreme heterogeneity, data deluge 
problem, algorithms and libraries
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The Hardware: EPAC RISC-V 
Accelerator technology
• Prototype chip implemented as a joint effort by different parties 

including FORTH
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RISC-V Core (AVS) 
+ 

Vector Unit (VPU)

aka EPAC-VEC

K.  Chronaki



EPAC RISC-V Accelerator
• The EPAC RISC-V accelerator consists of a RISC-V core and a RISC-V 

Vector (RVV) unit

• RISC-V core (Avispado): a general purpose core that implements the RISC-V 
instruction set architecture (ISA), by Semidynamics

• RISC-V vector: a vector unit that implements the RISC-V vector extension 
(RVV), by BSC

• The vector unit executes instructions on multiple data
• One vector unit instruction corresponds to multiple similar instructions operated on 

several elements of the vector register
• This is achieved by using the special vector registers that can store up to a number of elements 

each (instead of 1 element per register for the traditional scalar registers)
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Scalar Register Instruction Vector Register Instruction

A[0]

B[0]

+

B[0] B[1] B[2] B[3]

A[0] A[1] A[2] A[3]

+ + + +

K.  Chronaki



EPAC RISC-V Accelerator

• Key features of the EPAC RISC-V Accelerator architecture:
• Use of very long vector registers (256 FP64 elements = 16,384 bits)

• A scalar register (non vector) is 32 or 64 bit – depending on the system

• Other vector architectures have the following vector register sizes: 
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SSE, NEON: 128 bits

AVX2, Rhea-SVE256: 256 bits

AVX512: 512 bits

SVE-max: 2048 bits

NEC, EPAC-VEC: 16384 bits

• Vector Length agnostic architecture: supports multiple sizes of vector length (can be set at runtime)

Scalar processor SIMD (e.g., AVX2) Variable VL (e.g., RVV)

K.  Chronaki
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