- EURO

Greece

Parallelism —

Essential Concepts
for HPC

Dr. Lena Kanellou

kanellou@ics.forth.gr

A typical HPC cluster anatomy

AEREEN
= 1010
Processor 4
s 1010
|
T

Memory
(RAM)

Storage
(Disk)

(e

kanellou@ics.forth.gr Parallelism — Essential Concepts for HPC

A typical HPC cluster anatomy

Processor . I 0 I 0
o . 1010
Core

Memory
‘ (RAM)

Storage
(Disk)

L

kanellou@ics.forth.gr Parallelism — Essential Concepts for HPC

A typical HPC cluster anatomy

Node

A typical HPC cluster anatomy

—

kanellou@ics.forth.gr

T 10

Parallelism — Essential Concepts for HPC

A typical HPC cluster anatomy

—

kanellou@ics.forth.gr

Login nodes

Parallelism — Essential Concepts for HPC

Compute
nodes

A typical HPC cluster anatomy

—

kanellou@ics.forth.gr

Login nodes

Compute
nodes

ER EE

B EE

10i0l0I01010

B BB

B BB

Parallelism — Essential Concepts for HPC

A typical HPC cluster anatomy

kanellou@ics.forth.gr

Login nodes

ER EE

B EE

10i0l0I01010

B BB

=
R 55

Parallelism — Essential Concepts for HPC

=~GPU

What is Parallelism in Computing?

kanellou@ics.forth.gr Parallelism — Essential Concepts for HPC

But first...

kanellou@ics.forth.gr

EURO

Greece

»

HPC Training Series “

e T

Compute at Scale: BJncepts

and Sputllght on i1, Simulations
| PRESENTATION LANGUAGE: GREEK |

SEPTEMBER 29, 2025 | 10:00 EET | ONLINE

Parallelism — Essential Concepts for HPC

10

Computing at scale

* Continue to function correctly as the load increases
— be that load data, number of users, workload.

* Adapt to the increased load by adding more
resources — be they computing units, storage,
network bandwidth, etc

e Handle real-world situations

kanellou@ics.forth.gr Parallelism — Essential Concepts for HPC

11

Scalability and scaling

Scalability: A metric that indicates the
/‘ I ability of a system to increase (or decrease) .
.I in performance and/or cost as a response to Capacity of
changes in processing demand. aresource

Achieving scalability

Determining scalability

Strong scaling: Weak scaling:

Increase the resources, -
)) Increase the resources,
while the problem size and the broblem size
remains the same. P ' ScaleOur, Amount of

resources

kanellou@ics.forth.gr Parallelism — Essential Concepts for HPC 12

What is Parallelism in Computing?

kanellou@ics.forth.gr Parallelism — Essential Concepts for HPC

13

What is Parallelism in Computing?

kanellou@ics.forth.gr Parallelism — Essential Concepts for HPC 14

What is Parallelism in Computing?

* Parallelism in computing is the ability to perform
multiple operations at the same time.

* Hardware level: The machine contains several
instances of the same resource.

* Software level: The application consists of several
(identical) parts.

* Algorithm level: The algorithm accounts for the
splitting of the work into several (identical) subtask.

kanellou@ics.forth.gr Parallelism — Essential Concepts for HPC 15

Why do we care about Parallelism at Scale?

* Scalability is the ability of a system to maintain efficiency as you
add more resources.

* Thus, parallelism in a system / algorithm / design, implies the
capacity for scalability.

* Splitting a given workload allows us to take advantage of all available
resources.

e [t also allows us to add more resources to share the workload.

kanellou@ics.forth.gr Parallelism — Essential Concepts for HPC 16

Parallelism —

Processor

Serial run

Problem size

Speed-up

Task

kanellou@ics.forth.gr

Some essential terminology

An independent execution unit, either conceptual or physical,
capable of running tasks concurrently with others (also: worker)

Running an application on a single processor.
The amount of data or amount of memory or even the amount of

calculation repetitions that are necessary to solve a particular
problem.

The ratio of the time of the serial run to the time of the parallel run for a
given problem and a given problem size.

A unit of work that can be executed independently.

Parallelism — Essential Concepts for HPC

17

Limits of parallelism: Amdahl’s law

t : .
* Speed-up =t—1 , where t, is the time a problem takes on one
N

processor, as a serial run, and ty is the time it takes when divided
over N processors.

* However, not all parts of a problem can be parallelized!

* Let F, be the time required to execute the part of a problem that can be
parallelized and F, be the time required for the part that cannot. Then:

_ v
ty = F; + 2

* Amdahl’s law was initially formulated with a fixed problem size in
mind = measures strong scaling .

kanellou@ics.forth.gr Parallelism — Essential Concepts for HPC 18

Gustafson’s law

* When the problem size increases, as well as the number of
processors, Amdahl’s law is no longer accurate.

* Gustafson found that the parallel part of a program scales with the
problem size.

* the amount of work done in parallel is linearly proportional to the number
of processors

* Scaled speed-up=s +p X N, where s is the time required for the serial
part of the problem and p is the time required for the parallel part of the
problem. Thus, s +p = 1.Then, the scaled speed-up is:
14+ (N —1) Xnp.

* Gustafson’s law expresses weak scaling.

kanellou@ics.forth.gr Parallelism — Essential Concepts for HPC 19

To recap

* Weak scaling: problem size increases
proportionally to the number of parallel
processes.

* Helps analyze how big of a problem we can solve
in a given system.

* Strong scaling: problem size remains the
same for an increasing number of processes

* Helps analyze how fast we can solve a problem of
a given size, in a given system.

kanellou@ics.forth.gr Parallelism — Essential Concepts for HPC

Linear Scaleup

—_—
Sublinear
0.5 Scaleup
4 g 12
Factor (# workers, data size)
12
8
4 =k
e _.-"'-. ; L]
Z~"Sublinear 1
| Speedup !
N |
] 4 8 12

Number of workers

20

How to parallelize? Flynn’s taxonomy

Sequential execution of
instructions on a single
data stream. Obsolete.

Example: traditional,
early CPUs, e.g. Intel x86

L

Multiple instructions applied
to a single data stream. Rare
in practice.

Example: redundancy-

based fault-tolerant
systems.

kanellou@ics.forth.gr

One instruction applied to multiple data

SISD: SIMD: elements simultaneously

Single Single
instruction, instruction,
single data multiple data

Multiple processors execute different instructions
MISD: MIMD: on different data independently

M ultiple M ultiple Example: Multi-core processors (e.g. Corei7, AMD
instructions instructions Ryzen), Symmetric Multiprocessing (SMP) systems,
b b

single data multiple data distributed systems

Parallelism — Essential Concepts for HPC 21

So, what is Parallelism in Computing?

kanellou@ics.forth.gr Parallelism — Essential Concepts for HPC 22

So, what is Parallelism in Computing?

Parallel computing paradigms

* Shared Memory parallelism

* multiple cores within a single node access and operate on a single,
shared memory space.

* can leverage multiple cores on a CPU or GPU (graphics processing unit).

OpenMIP

<ANVIDIA,

CUDA.

kanellou@ics.forth.gr Parallelism — Essential Concepts for HPC 24

Parallel computing paradigms

* Distributed memory parallelism

* Tasks run on cores of separate nodes, each equipped with its own local
memory.

* Communication is achieved via exchange of messages on the

interconnect between nodes.

kanellou@ics.forth.gr Parallelism — Essential Concepts for HPC

25

Parallel, concurrent, distributed

 Parallelism:

* use multiple cores or multiple processors where each performs a
(identical) task independently.

* May use a shared memory, may use individual memories.
* Implies multiple instances of a computing resource.

Example: A GPU running multiple threads simultaneously.

kanellou@ics.forth.gr Parallelism — Essential Concepts for HPC

26

Parallel, concurrent, distributed

 Concurrency.
* perform multiple tasks with overlapping durations.

* This may - or may not! — entail multiple processors!

 Can even be achieved on a single-core processor by making the tasks time-share
the processor.

* Preemptive multitasking.

* Process communication is achieved via pipes and signals.
* Nowadays commonly implies a shared memory paradigm.

Example: A mobile phone web browser, handling page rendering,

network requests, and user input.

kanellou@ics.forth.gr Parallelism — Essential Concepts for HPC

27

Parallel, concurrent, distributed

* Distributed computation:
* Multiple processors communicate via messages.

 Computation can be splitin various ways:
* Processors may each perform a (identical) task independently

* Processors may co-operate or co-ordinate to perform one common application,
split into different tasks that have interdependencies.

* Processors may execute different applications that require synchronization for the
access to shared resources.

Example: A Hadoop cluster of servers, each with its own memory,

working together over a network to perform big data processing.

kanellou@ics.forth.gr Parallelism — Essential Concepts for HPC

28

Types of parallelizable problems in HPC

Embarassingly The problem consists of a collection of tasks which are entirely

parallel independent and do not need to communicate with each other. No
inter-task communication or synchronization is required after tasks
are launched.

Examples: Monte Carlo simulation, 3D video rendering on GPU,
parameter sweeps

Data parallel The problem consists of repeatedly applying the same operation (or
sequence of operations) on large amounts of data that are split across
workers. After each cycle, a synchronization phase takes place among
workers, in which possibly some further operation, e.g., summation, n P
reduction, etc, is applied on the produced data.

Examples: Training deep learning models, matrix multiplication. A - B = C

kanellou@ics.forth.gr Parallelism — Essential Concepts for HPC 29

Types of parallelizable problems in HPC

Task parallel

Pipeline Parallel

kanellou@ics.forth.gr

Different tasks execute in parallel on a set of data, instead of 4 2e® g0
splitting it up. There may be dependencies among the tasks, o® Yo o ""‘ .
which can be represented as a Directed Acyclic Graph. : s ¢ » s e
R S T S
Examples: Scientific simulation pipelines, sparse matrix o PEM M &

factorization, parallel graph algorithms.

The computation required to solve the problem can be broken
into stages and each stage can run concurrently on different
data - like in an assembly line.

Examples: Streaming data processing, training
transformers layer by layer across GPUs.

Parallelism — Essential Concepts for HPC 30

Examples of parallelism in ML training

| = w8

* Data parallelism: - -}@ N - ﬁ
* Split data into sections, replicate the model into .

"I

multiple GPUs, assign a data portion to a GPU
* What about Distributed Data Parallel?

R
S

—> |

([

* Model parallelism:

* Splitthe model into partitions, assign a partition to each GPU, manage
data flow so as to appropriately process the relevant data in each GPU

kanellou@ics.forth.gr Parallelism — Essential Concepts for HPC 31

Takeaway: Parallelism everywhere

kanellou@ics.forth.gr

ERmmES

10i01010 1010
10i01010 1010
'Multi-
processor
node
.Multi-core

®pipelining

on the core
level

architecture TR R TN

Parallelism — Essential Concepts for HPC

Multi-node
HPC
infrastructure

32

EURO
Greece

Thank you!

Dr. Lena Kanellou
kanellou@ics.forth.gr

	Slide 1: Parallelism – Essential Concepts for HPC
	Slide 2: A typical HPC cluster anatomy
	Slide 3: A typical HPC cluster anatomy
	Slide 4: A typical HPC cluster anatomy
	Slide 5: A typical HPC cluster anatomy
	Slide 6: A typical HPC cluster anatomy
	Slide 7: A typical HPC cluster anatomy
	Slide 8: A typical HPC cluster anatomy
	Slide 9: What is Parallelism in Computing?
	Slide 10: But first…
	Slide 11: Computing at scale
	Slide 12: Scalability and scaling
	Slide 13: What is Parallelism in Computing?
	Slide 14: What is Parallelism in Computing?
	Slide 15: What is Parallelism in Computing?
	Slide 16: Why do we care about Parallelism at Scale?
	Slide 17: Parallelism – Some essential terminology
	Slide 18: Limits of parallelism: Amdahl’s law
	Slide 19: Gustafson’s law
	Slide 20: To recap
	Slide 21: How to parallelize? Flynn’s taxonomy
	Slide 22: So, what is Parallelism in Computing?
	Slide 23: So, what is Parallelism in Computing?
	Slide 24: Parallel computing paradigms
	Slide 25: Parallel computing paradigms
	Slide 26: Parallel, concurrent, distributed
	Slide 27: Parallel, concurrent, distributed
	Slide 28: Parallel, concurrent, distributed
	Slide 29: Types of parallelizable problems in HPC
	Slide 30: Types of parallelizable problems in HPC
	Slide 31: Examples of parallelism in ML training
	Slide 32: Takeaway: Parallelism everywhere
	Slide 33: Thank you!

