
Parallelism –
Essential Concepts
for HPC
Dr. Lena Kanellou
kanellou@ics.forth.gr

A typical HPC cluster anatomy

kanellou@ics.forth.gr Parallelism – Essential Concepts for HPC 2

Memory
(RAM)

Storage
(Disk)

Processor
(CPU)

A typical HPC cluster anatomy

kanellou@ics.forth.gr Parallelism – Essential Concepts for HPC 3

Memory
(RAM)

Storage
(Disk)

Processor
(CPU)

Core

A typical HPC cluster anatomy

kanellou@ics.forth.gr Parallelism – Essential Concepts for HPC 4

Node

A typical HPC cluster anatomy

kanellou@ics.forth.gr Parallelism – Essential Concepts for HPC 5

A typical HPC cluster anatomy

kanellou@ics.forth.gr Parallelism – Essential Concepts for HPC 6

Login nodes

Compute
nodes

A typical HPC cluster anatomy

kanellou@ics.forth.gr Parallelism – Essential Concepts for HPC 7

Login nodes

Compute
nodes

A typical HPC cluster anatomy

kanellou@ics.forth.gr Parallelism – Essential Concepts for HPC 8

Login nodes

Compute
nodes

GPU

What is Parallelism in Computing?

kanellou@ics.forth.gr Parallelism – Essential Concepts for HPC 9

But first…

Parallelism – Essential Concepts for HPC 10kanellou@ics.forth.gr

Computing at scale

• Continue to function correctly as the load increases
– be that load data, number of users, workload.

• Adapt to the increased load by adding more
resources – be they computing units, storage,
network bandwidth, etc

• Handle real-world situations

Parallelism – Essential Concepts for HPC 11kanellou@ics.forth.gr

Scalability and scaling

kanellou@ics.forth.gr Parallelism – Essential Concepts for HPC 12

Scalability: A metric that indicates the
ability of a system to increase (or decrease)
in performance and/or cost as a response to
changes in processing demand. Achieving scalability

Amount of
resources

Capacity of
a resource

Sc
al

e
U

p

Scale Out

Determining scalability

Strong scaling:
Increase the resources,
while the problem size
remains the same.

Weak scaling:
Increase the resources,
and the problem size.

What is Parallelism in Computing?

kanellou@ics.forth.gr Parallelism – Essential Concepts for HPC 13

What is Parallelism in Computing?

kanellou@ics.forth.gr Parallelism – Essential Concepts for HPC 14

What is Parallelism in Computing?

kanellou@ics.forth.gr Parallelism – Essential Concepts for HPC 15

• Parallelism in computing is the ability to perform
multiple operations at the same time.
• Hardware level: The machine contains several

instances of the same resource.
• Software level: The application consists of several

(identical) parts.
• Algorithm level: The algorithm accounts for the

splitting of the work into several (identical) subtask.

Why do we care about Parallelism at Scale?

• Scalability is the ability of a system to maintain efficiency as you
add more resources.

• Thus, parallelism in a system / algorithm / design, implies the
capacity for scalability.
• Splitting a given workload allows us to take advantage of all available

resources.
• It also allows us to add more resources to share the workload.

kanellou@ics.forth.gr Parallelism – Essential Concepts for HPC 16

Parallelism – Some essential terminology

kanellou@ics.forth.gr Parallelism – Essential Concepts for HPC 17

Processor An independent execution unit, either conceptual or physical,
capable of running tasks concurrently with others (also: worker)

Serial run Running an application on a single processor.

Problem size The amount of data or amount of memory or even the amount of
calculation repetitions that are necessary to solve a particular
problem.

Speed-up The ratio of the time of the serial run to the time of the parallel run for a
given problem and a given problem size.

Task A unit of work that can be executed independently.

Limits of parallelism: Amdahl’s law

• Speed-up =𝑡1

𝑡𝑁
 , where t1 is the time a problem takes on one

processor, as a serial run, and tN is the time it takes when divided
over N processors.

• However, not all parts of a problem can be parallelized!
• Let Fp be the time required to execute the part of a problem that can be

parallelized and Fs be the time required for the part that cannot. Then:
𝑡𝑁 = 𝐹𝑠 +

𝐹𝑝

𝑁

• Amdahl’s law was initially formulated with a fixed problem size in
mind → measures strong scaling .

kanellou@ics.forth.gr Parallelism – Essential Concepts for HPC 18

Gustafson’s law

• When the problem size increases, as well as the number of
processors, Amdahl’s law is no longer accurate.
• Gustafson found that the parallel part of a program scales with the

problem size.
• the amount of work done in parallel is linearly proportional to the number

of processors
• Scaled speed-up =𝑠 + 𝑝 × 𝑁 , where 𝑠 is the time required for the serial

part of the problem and 𝑝 is the time required for the parallel part of the
problem. Thus, 𝑠 + 𝑝 = 1 . Then, the scaled speed-up is:
1 + 𝑁 − 1 × 𝑝.

• Gustafson’s law expresses weak scaling.

kanellou@ics.forth.gr Parallelism – Essential Concepts for HPC 19

To recap

• Weak scaling: problem size increases
proportionally to the number of parallel
processes.
• Helps analyze how big of a problem we can solve

in a given system.

• Strong scaling: problem size remains the
same for an increasing number of processes
• Helps analyze how fast we can solve a problem of

a given size, in a given system.

kanellou@ics.forth.gr Parallelism – Essential Concepts for HPC 20

How to parallelize? Flynn’s taxonomy

SISD:

Single
instruction,
single data

SIMD:

Single
instruction,

multiple data

MISD:
Multiple

instructions,
single data

MIMD:
Multiple

instructions,
multiple data

kanellou@ics.forth.gr Parallelism – Essential Concepts for HPC 21

Sequential execution of
instructions on a single
data stream. Obsolete.

Example: traditional,
early CPUs, e.g. Intel x86

One instruction applied to multiple data
elements simultaneously

Examples: GPUs , vector processors,

Multiple instructions applied
to a single data stream. Rare
in practice.

Example: redundancy-
based fault-tolerant
systems.

Multiple processors execute different instructions
on different data independently

Example: Multi-core processors (e.g. Core i7, AMD
Ryzen), Symmetric Multiprocessing (SMP) systems,
distributed systems

So, what is Parallelism in Computing?

kanellou@ics.forth.gr Parallelism – Essential Concepts for HPC 22

So, what is Parallelism in Computing?

kanellou@ics.forth.gr Parallelism – Essential Concepts for HPC 23

Parallel computing paradigms

• Shared Memory parallelism
• multiple cores within a single node access and operate on a single,

shared memory space.
• can leverage multiple cores on a CPU or GPU (graphics processing unit).

kanellou@ics.forth.gr Parallelism – Essential Concepts for HPC 24

Parallel computing paradigms

• Distributed memory parallelism
• Tasks run on cores of separate nodes, each equipped with its own local

memory.
• Communication is achieved via exchange of messages on the

interconnect between nodes.

kanellou@ics.forth.gr Parallelism – Essential Concepts for HPC 25

Parallel, concurrent, distributed

• Parallelism:
• use multiple cores or multiple processors where each performs a

(identical) task independently.
• May use a shared memory, may use individual memories.
• Implies multiple instances of a computing resource.

kanellou@ics.forth.gr Parallelism – Essential Concepts for HPC 26

Example: A GPU running multiple threads simultaneously.

Parallel, concurrent, distributed

• Concurrency:
• perform multiple tasks with overlapping durations.
• This may – or may not! – entail multiple processors!

• Can even be achieved on a single-core processor by making the tasks time-share
the processor.
• Preemptive multitasking.
• Process communication is achieved via pipes and signals.

• Nowadays commonly implies a shared memory paradigm.

kanellou@ics.forth.gr Parallelism – Essential Concepts for HPC 27

Example: A mobile phone web browser, handling page rendering,
network requests, and user input.

Parallel, concurrent, distributed

• Distributed computation:
• Multiple processors communicate via messages.
• Computation can be split in various ways:

• Processors may each perform a (identical) task independently
• Processors may co-operate or co-ordinate to perform one common application,

split into different tasks that have interdependencies.
• Processors may execute different applications that require synchronization for the

access to shared resources.

kanellou@ics.forth.gr Parallelism – Essential Concepts for HPC 28

Example: A Hadoop cluster of servers, each with its own memory,
working together over a network to perform big data processing.

Embarassingly
parallel

The problem consists of a collection of tasks which are entirely
independent and do not need to communicate with each other. No
inter-task communication or synchronization is required after tasks
are launched.

Examples: Monte Carlo simulation, 3D video rendering on GPU,
parameter sweeps

Data parallel The problem consists of repeatedly applying the same operation (or
sequence of operations) on large amounts of data that are split across
workers. After each cycle, a synchronization phase takes place among
workers, in which possibly some further operation, e.g., summation,
reduction, etc, is applied on the produced data.

Examples: Training deep learning models, matrix multiplication.

kanellou@ics.forth.gr Parallelism – Essential Concepts for HPC 29

Types of parallelizable problems in HPC

Task parallel Different tasks execute in parallel on a set of data, instead of
splitting it up. There may be dependencies among the tasks,
which can be represented as a Directed Acyclic Graph.

Examples: Scientific simulation pipelines, sparse matrix
factorization, parallel graph algorithms.

Pipeline Parallel The computation required to solve the problem can be broken
into stages and each stage can run concurrently on different
data – like in an assembly line.

Examples: Streaming data processing, training
transformers layer by layer across GPUs.

kanellou@ics.forth.gr Parallelism – Essential Concepts for HPC 30

Types of parallelizable problems in HPC

Examples of parallelism in ML training

• Data parallelism:
• Split data into sections, replicate the model into
 multiple GPUs, assign a data portion to a GPU

• What about Distributed Data Parallel?

• Model parallelism:
• Split the model into partitions, assign a partition to each GPU, manage

data flow so as to appropriately process the relevant data in each GPU

kanellou@ics.forth.gr Parallelism – Essential Concepts for HPC 31

Takeaway: Parallelism everywhere

kanellou@ics.forth.gr Parallelism – Essential Concepts for HPC 32

Pipelining
on the core
level

Multi-core
architecture

Multi-
processor
node

Multi-node
HPC
infrastructure

Thank you!
Dr. Lena Kanellou
kanellou@ics.forth.gr

	Slide 1: Parallelism – Essential Concepts for HPC
	Slide 2: A typical HPC cluster anatomy
	Slide 3: A typical HPC cluster anatomy
	Slide 4: A typical HPC cluster anatomy
	Slide 5: A typical HPC cluster anatomy
	Slide 6: A typical HPC cluster anatomy
	Slide 7: A typical HPC cluster anatomy
	Slide 8: A typical HPC cluster anatomy
	Slide 9: What is Parallelism in Computing?
	Slide 10: But first…
	Slide 11: Computing at scale
	Slide 12: Scalability and scaling
	Slide 13: What is Parallelism in Computing?
	Slide 14: What is Parallelism in Computing?
	Slide 15: What is Parallelism in Computing?
	Slide 16: Why do we care about Parallelism at Scale?
	Slide 17: Parallelism – Some essential terminology
	Slide 18: Limits of parallelism: Amdahl’s law
	Slide 19: Gustafson’s law
	Slide 20: To recap
	Slide 21: How to parallelize? Flynn’s taxonomy
	Slide 22: So, what is Parallelism in Computing?
	Slide 23: So, what is Parallelism in Computing?
	Slide 24: Parallel computing paradigms
	Slide 25: Parallel computing paradigms
	Slide 26: Parallel, concurrent, distributed
	Slide 27: Parallel, concurrent, distributed
	Slide 28: Parallel, concurrent, distributed
	Slide 29: Types of parallelizable problems in HPC
	Slide 30: Types of parallelizable problems in HPC
	Slide 31: Examples of parallelism in ML training
	Slide 32: Takeaway: Parallelism everywhere
	Slide 33: Thank you!

