
Tutorial: Introduction to PyTorch
and DDP

A beginner-friendly introduction to
PyTorch, one of the most popular
libraries for deep learning, and an
overview of how to scale training

with Distributed Data Parallel (DDP).
Introduction to PyTorch & DDP | poldaf@ics.forth.gr

Core Concepts

PyTorch & Training

• Tensor: multi-dimensional array (like NumPy) that can live on CPU/GPU.

• Model / Layer: functions with learnable weights.

• Forward pass: compute predictions from inputs.

• Loss: measures how wrong the predictions are.

• Gradient (autograd): “how much & in which direction” each weight should
change to reduce the loss (computed automatically by PyTorch).

• Optimizer: updates weights using the gradients (e.g., SGD, Adam).

• Batch / Mini-batch: small set of samples processed together.

• Epoch: one full pass over the training dataset.

Introduction to PyTorch & DDP | poldaf@ics.forth.gr

Core Concepts
Distributed / DDP

• Process / Rank: one OS process per GPU; its global id is the rank.

• Local rank: the GPU index inside the current node.

• World size: total number of processes (usually = total GPUs).

• Backend: comms engine (NCCL for GPUs, Gloo for CPU, MPI on HPC).

• DistributedSampler: shards the dataset so each rank sees a different slice.

• All-reduce (gradient sync): averages gradients across all ranks → identical weights
everywhere.

• DDP = synchronous data parallel: all ranks step together each batch.

• Throughput (img/s): how many samples per second we process (our demo
metric).

• Rendezvous (MASTER_ADDR:PORT): how processes find each other when
launched with torchrun.

• Node rank: the id of each machine in multi-node runs.

Introduction to PyTorch & DDP | poldaf@ics.forth.gr

Why not just use your laptop/pc?

Training deep learning models on a personal laptop seems convenient at first.

But as your datasets grow and your models become more complex, the

limitations quickly appear:
• Not enough memory (RAM/VRAM)

• Slow CPU or GPU

• Long training times

• Overheating and hardware strain

For realistic or large-scale projects, we need more compute power than a
laptop or pc can offer.

It’s not just raw speed — it’s time-to-feedback. Faster feedback leads to
better next iterations/epochs.

This is where distributed training comes in.

Introduction to PyTorch & DDP | poldaf@ics.forth.gr

The Problem with Local Training

As your machine learning projects grow, you start working with larger
datasets and more complex models.
Training locally on a single CPU or GPU becomes a bottleneck and leads to
several issues:

• Extremely slow training time

• Out-of-memory (OOM) errors

• Limited batch size

• Difficulty experimenting quickly

• Inefficient use of modern hardware resources

These issues make it hard to iterate, experiment, or scale your work
efficiently.

Takeaway: scaling out = faster feedback, not just raw speed.

Introduction to PyTorch & DDP | poldaf@ics.forth.gr

What is Distributed Training?

Distributed training is a method used to speed up model training by spreading the
workload across multiple devices.
Instead of using just one GPU or machine, you use several working together.

Key ideas:
• Replicate the same model on each GPU (or node)

• Shard the dataset (DistributedSampler) — each GPU sees a different slice

• After each batch, synchronize gradients (NCCL all-reduce)

• Training time is significantly reduced

This approach is essential when working with large-scale models and data.

Introduction to PyTorch & DDP | poldaf@ics.forth.gr

Introduction to PyTorch & DDP | poldaf@ics.forth.gr

Introduction to PyTorch & DDP | poldaf@ics.forth.gr

How processes talk to each other
in DDP

• NCCL — GPU-optimized, best choice for NVIDIA multi-GPU / multi-node

• Gloo — CPU-first (simple setup; fine for CPU training or quick tests)

• MPI — integrates with existing MPI stacks on HPC clusters

• MPS — Apple Silicon GPUs (M1/M2+) It is not backend, its a device.

How to pick:

• Training on NVIDIA GPUs → use NCCL

• CPU-only or quick local tests → use Gloo

• On an MPI-managed HPC cluster → use MPI

• On Mac (M1/M2) → use device "mps"

Introduction to PyTorch & DDP | poldaf@ics.forth.gr

Why Nccl Ring? (vs Tree/Binary)
• Ring = neighbors exchange chunks in a loop.Reduce-Scatter then All-

Gather. Bandwidth-optimal, uses all links but Latency ~ 2×(N−1) steps,
worse while N (GPUs) increase.

• Tree/Binary: lower latency ≈ 2×log₂N steps. Better for small tensors or
large N; may underutilize bandwidth

Introduction to PyTorch & DDP | poldaf@ics.forth.gr

Introduction to PyTorch & DDP | poldaf@ics.forth.gr

What is PyTorch?

PyTorch is an open-source machine learning framework developed by Meta
(formerly Facebook).
 It is widely used in both academia and industry for building deep learning
models.

Why PyTorch?
• Pythonic and intuitive — feels like working with NumPy

• Dynamic computation graphs (eager execution)

• Built-in support for GPUs and automatic differentiation

• Large and active community with rich ecosystem

• Ideal for research and production

PyTorch gives you full control and flexibility when designing, training, and
deploying AI models.

Introduction to PyTorch & DDP | poldaf@ics.forth.gr

Installing and Using PyTorch
You can explore and install PyTorch from the official website:

https://pytorch.org

Once installed, you can:
• Create tensors (multi-dimensional arrays)

• Perform GPU-accelerated operations

• Build and train neural networks

• Use built-in tools for autograd (automatic differentiation)

PyTorch allows you to prototype quickly and scale when needed — all using standard
Python.

Introduction to PyTorch & DDP | poldaf@ics.forth.gr

https://pytorch.org/

A Simple Code Example

• With NumPy(CPU only): With PyTorch(CPU or GPU):

Key differences:

• PyTorch supports GPUs (device='cuda')

• You can switch between CPU and GPU easily

• PyTorch integrates seamlessly with deep learning models

• This flexibility is why PyTorch is so powerful for AI workloads

Introduction to PyTorch & DDP | poldaf@ics.forth.gr

A more complicated example

Plain NumPy (manual gradients): PyTorch (autograd + optimizer):

What is DDP
(Distributed Data Parallel)?

DDP (DistributedDataParallel) is a module in PyTorch that allows you to train
your model across multiple GPUs or machines efficiently.

How it works:

• The model is replicated on each GPU

• The dataset is split among the GPUs

• Each GPU does forward and backward pass independently

• Gradients are synchronized automatically after every batch

• All model copies are kept in sync

DDP helps you scale training with minimal code changes, offering both
performance and stability.

Introduction to PyTorch & DDP | poldaf@ics.forth.gr

How DDP Works

DistributedDataParallel works by distributing the training process across
multiple GPUs (or nodes), while keeping all model replicas in sync.

At each training step:
1) Each GPU gets a copy of the model

2) A subset of the dataset is sent to each GPU

3) Each GPU performs:

• Forward pass(compute predictions from inputs.)

• Loss calculation(measures how wrong the predictions are.)
• Backward pass (gradient computation)

4) Gradients are synchronized across all GPUs (all-reduce (NCCL))

5) All models are updated consistently

This process repeats after every batch, ensuring all devices work together as
one.

Introduction to PyTorch & DDP | poldaf@ics.forth.gr

When Should You Use DDP?

DDP is most useful when your model or dataset is too large or too slow to
train on a single machine.

Use DDP when:

• You're working with large-scale datasets (e.g. images, video, audio)

• Your model is complex and deep (e.g. transformers, CNNs)

• Training on one GPU takes too long

• You're using multiple GPUs or a cluster/cloud environment

• You need to reduce training time significantly

With DDP, training time can go from hours to minutes depending on the
hardware.

Introduction to PyTorch & DDP | poldaf@ics.forth.gr

What DDP is NOT for

While DDP is powerful for distributed training, it is not designed for other
types of parallel processing.

DDP is NOT meant for:
• Model inference (use TorchServe or ONNX instead)

• Serving models in production

• Parallel data processing (use Spark, Dask, or Ray)

• General-purpose multiprocessing

DDP is specialized for training deep learning models, not for deploying or
running them after training.

Introduction to PyTorch & DDP | poldaf@ics.forth.gr

Demo setup

• Dataset: Coco 118,287 images

• Model: ResNet-18 ~11.7M params (pretrained), I only change the FC → 80
classes

• Loss / Optimizer: CrossEntropyLoss/ Adam

• 2 machines with 2 x NVIDIA GeForce RTX 2080 Ti (11264MiB) each

• Task (for simplicity): detection → single-label classification (the 1st
category of the image)

• DDP: DistributedSampler, wrap the model with DDP, launch with torchrun

• Throughput (img/s)

• Batch size= 256

Introduction to PyTorch & DDP | poldaf@ics.forth.gr

How to run

Single machine 1 GPU:

multiple machines:

Introduction to PyTorch & DDP | poldaf@ics.forth.gr

1gb/s Ethernet vs 56gb/s
InfiniBand

Introduction to PyTorch & DDP | poldaf@ics.forth.gr

1gb/s Ethernet:

56gb/s InfiniBand:

Conclusion & Questions

PyTorch provides a flexible and powerful framework for building deep
learning models.
When your workloads grow, DistributedDataParallel (DDP) helps you scale
training across multiple GPUs or machines — with minimal changes to your
code.

Key takeaways:

• PyTorch is easy to start with and scales well

• DDP is the go-to method for distributed training

• Use it when working with large datasets or complex models

• Not suitable for inference or general parallel computing

Thank you for your attention!

Introduction to PyTorch & DDP | poldaf@ics.forth.gr

	Διαφάνεια 1: Tutorial: Introduction to PyTorch and DDP
	Διαφάνεια 2: Core Concepts
	Διαφάνεια 3: Core Concepts
	Διαφάνεια 4: Why not just use your laptop/pc?
	Διαφάνεια 5: The Problem with Local Training
	Διαφάνεια 6: What is Distributed Training?
	Διαφάνεια 7
	Διαφάνεια 8
	Διαφάνεια 9: How processes talk to each other in DDP
	Διαφάνεια 10: Why Nccl Ring? (vs Tree/Binary)
	Διαφάνεια 11
	Διαφάνεια 12: What is PyTorch?
	Διαφάνεια 13: Installing and Using PyTorch
	Διαφάνεια 14: A Simple Code Example
	Διαφάνεια 15: A more complicated example
	Διαφάνεια 16: What is DDP (Distributed Data Parallel)?
	Διαφάνεια 17: How DDP Works
	Διαφάνεια 18: When Should You Use DDP?
	Διαφάνεια 19: What DDP is NOT for
	Διαφάνεια 20: Demo setup
	Διαφάνεια 21: How to run
	Διαφάνεια 22: 1gb/s Ethernet vs 56gb/s InfiniBand
	Διαφάνεια 23: Conclusion & Questions

