O PyTorch

Tutorial: Introduction to PyTorch
and DDP

A beginner-friendly introduction to
PyTorch, one of the most popular
libraries for deep learning, and an
overview of how to scale training

with Distributed Data Parallel (DDP).

Introduction to PyTorch & DDP | poldaf@ics.forth.gr

Core Concepts

PyTorch & Training

Tensor: multi-dimensional array (like NumPy) that can live on CPU/GPU.
Model / Layer: functions with learnable weights.

Forward pass: compute predictions from inputs.

Loss: measures how wrong the predictions are.

Gradient (autograd): “how much & in which direction” each weight should
change to reduce the loss (computed automatically by PyTorch).

Optimizer: updates weights using the gradients (e.g., SGD, Adam).
Batch / Mini-batch: small set of samples processed together.

Epoch: one full pass over the training dataset.

Introduction to PyTorch & DDP | poldaf@ics.forth.gr

Core Concepts

Distributed / DDP

Process / Rank: one OS process per GPU; its global id is the rank.

Local rank: the GPU index inside the current node.

World size: total number of processes (usually = total GPUs).

Backend: comms engine (NCCL for GPUs, Gloo for CPU, MPI on HPC).
DistributedSampler: shards the dataset so each rank sees a different slice.

All-reduce (gradient sync): averages gradients across all ranks - identical weights
everywhere.

DDP = synchronous data parallel: all ranks step together each batch.

Throughput (img/s): how many samples per second we process (our demo
metric).

Rendezvous (MASTER_ADDR:PORT): how processes find each other when
launched with torchrun.

Node rank: the id of each machine in multi-node runs.

Introduction to PyTorch & DDP | poldaf@ics.forth.gr

Why not just use your laptop/pc?

Training deep learning models on a personal laptop seems convenient at first.
But as your datasets grow and your models become more complex, the

limitations quickly appear:
* Not enough memory (RAM/VRAM)
e Slow CPU or GPU
* Long training times

* Overheating and hardware strain

For realistic or large-scale projects, we need more compute power than a
laptop or pc can offer.

It’s not just raw speed — it’s time-to-feedback. Faster feedback leads to
better next iterations/epochs.

This is where distributed training comes in.

Introduction to PyTorch & DDP | poldaf@ics.forth.gr

The Problem with Local Training

As your machine learning projects grow, you start working with larger
datasets and more complex models.

Training locally on a single CPU or GPU becomes a bottleneck and leads to
several issues:

Extremely slow training time

Out-of-memory (OOM) errors

Limited batch size

Difficulty experimenting quickly

Inefficient use of modern hardware resources

These issues make it hard to iterate, experiment, or scale your work
efficiently.

Takeaway: scaling out = faster feedback, not just raw speed.

Introduction to PyTorch & DDP | poldaf@ics.forth.gr

What is Distributed Training?

Distributed training is a method used to speed up model training by spreading the

workload across multiple devices.
Instead of using just one GPU or machine, you use several working together.

Key ideas:
* Replicate the same model on each GPU (or node)
* Shard the dataset (DistributedSampler) — each GPU sees a different slice
* After each batch, synchronize gradients (NCCL all-reduce)
* Training time is significantly reduced

This approach is essential when working with large-scale models and data.

Introduction to PyTorch & DDP | poldaf@ics.forth.gr

Non-Distributed (Single GPU)

" GPU:0 }
Weights
Data Sampler / Mini
Dataloader Batch Optimizer

* One device
* Sequential batches
* No gradient sync required

Single-Machine DDP (2 GPUs)
Single-Machine — DDP with 2 GPUs

Single Machine

Weights # | sopfimizéer

e
S)
Bats Distributed . (Vo]
Sampler Mini Weights | Optimizer

Batch2

- J

* One machine, 2 GPUs
» Data split across GPUs
* Gradients synchronized via NCCL (DDP)

Introduction to PyTorch & DDP | poldaf@ics.forth.gr

Multi-Node DDP (2 machines X 2 GPUs)

Multi-Node DDP — 2 Machines X 2 GPUs

GPOT Y—G"%%gg 9
S
ont [Weights | Opt |
e -
Dataset - 2%
Distributed Mini ® =
(shared storage) Sampler Batch 1 3
i 2 Node 1
GPUO o GPUT
o]
Opt iights® | ope
Af
-
* Two machines, 2 GPUs each (4 total)

* Data sharded per rank
« Gradients synchronized across nodes

Introduction to PyTorch & DDP | poldaf@ics.forth.gr

How processes talk to each other
in DDP

* NCCL — GPU-optimized, best choice for NVIDIA multi-GPU / multi-node
* Gloo — CPU-first (simple setup; fine for CPU training or quick tests)

* MPI — integrates with existing MPI stacks on HPC clusters

« MPS — Apple Silicon GPUs (M1/M2+) It is not backend, its a device.
How to pick:

* Training on NVIDIA GPUs - use NCCL

 CPU-only or quick local tests - use Gloo

* Onan MPI-managed HPC cluster - use MPI

* On Mac(M1/M2) - use device "mps"

torch, torch.distributed dist
device = (torch.cuda.is_available()
torch.backends.mps.is_available()
)

dist.init process group(backend=)

Introduction to PyTorch & DDP | poldaf@ics.forth.gr

Why Nccl Ring? (vs Tree/Binary)

* Ring = neighbors exchange chunks in a loop.Reduce-Scatter then All-
Gather. Bandwidth-optimal, uses all links but Latency ~ 2x(N-1) steps,
worse while N (GPUs) increase.

* Tree/Binary: lower latency = 2xlog,N steps. Better for small tensors or

large N; may underutilize bandwidth
All-Reduce Algorithms: Ring vs Tree (N=8)

Ring All-Reduce Tree/Binary All-Reduce

Pros: bandwidth-opumal. uses all links Pros: lower latency (-2 xlog.N steps)
Cons: latency 2x(N—-1) steps Cons: con underutilize bandwidth; topology-sensitive

NCCL auto-selects per topology/message size. Ring suits small-mid N and large tensaors; Tree helps when N grows or tensors are small

Introduction to PyTorch & DDP | poldaf@ics.forth.gr

NCCL Ring All-Reduce (PyTorch DDP)

Node 0 Node 1
Reduce-Scatter (N—1 steps)
Intra-node: NVLink / PCle Inter-node: 1B / Ethernet (RDMA)
=
GPUO GPU1 GPU2 GPU3
58 <
<

All-Gather|(N—1 steps)

» Each GPU holds a different chunk of the gradient tensor.

* Reduce-Scatter: GPUs rotate chunks around the ring, summing as they go.
 All-Gather: the reduced chunks are broadcast so every GPU gets the full sum.
» Total cost ~ 2 x (N—1) steps; ring maximizes link bandwidth.

Introduction to PyTorch & DDP | poldaf@ics.forth.gr

(H)What is PyTorch?

PyTorch is an open-source machine learning framework developed by Meta
(formerly Facebook).

It is widely used in both academia and industry for building deep learning
models.

Why PyTorch?
* Pythonic and intuitive — feels like working with NumPy
* Dynamic computation graphs (eager execution)
* Built-in support for GPUs and automatic differentiation
* Large and active community with rich ecosystem
* ldeal for research and production

PyTorch gives you full control and flexibility when designing, training, and
deploying Al models.

Introduction to PyTorch & DDP | poldaf@ics.forth.gr

Olnstalling and Using PyTorch

You can explore and install PyTorch from the official website:
¢ https://pytorch.org

PyTorch Build Stable (2.8.0) Preview (Nightly)

Your OS Linue Mac Windows
Package LibTorch Source
Language Python C++/ Java

C(}mpute Platform CUDA 126 CuDA 128 CUuDA 129 ROCm 6.4 CPU
Run this Command: pip3 install torch torchwvision

Once installed, you can:
* Create tensors (multi-dimensional arrays)
* Perform GPU-accelerated operations
* Build and train neural networks
* Use built-in tools for autograd (automatic differentiation)

PyTorch allows you to prototype quickly and scale when needed — all using standard
Python.

Introduction to PyTorch & DDP | poldaf@ics.forth.gr

https://pytorch.org/

A Simple Code Example

With NumPy(CPU only): With PyTorch(CPU or GPU):

numpy np torch

Key differences:

* PyTorch supports GPUs (device="cuda')

* You can switch between CPU and GPU easily

* PyTorch integrates seamlessly with deep learning models

* This flexibility is why PyTorch is so powerful for Al workloads

Introduction to PyTorch & DDP | poldaf@ics.forth.gr

A more complicated example

Plain NumPy (manual gradients):
numpy as np # Linear regression y =

x = np.array([1., 2., 3., 4.])
y = np.array([2., 4., 6., 5.])

W, h.‘l Ir = 3 3

_ in range(109):
yhat =w * x + b
loss = ((yhat - y) ** 2).mean()

B e - ——] o el s

dw = 2 * ((yhat - y) * x).mean()
db = 2 * (yhat - y).mean()
W-=1r * du

b-=1r * db

PyTorch (autograd + optimizer):

torch # Linear "egression y = W

x = torch.tensor([l., 2., 2., 4.])

y = torch.tensor([2., 4., 6., 2.])

w = torch.randn(l, requires grad=
b = torch.zeros(1, requires grads=

opt = torch.optim.56D([w, b], lr=

range(166):
opt.zero grad()
yhat =w * x + b

loss = {(yhat - y) ** 2).mean()
loss.backward() # autograd builds the graph & applies the chain rule

)
)
)

What is DDP
(Distributed Data Parallel)?

DDP (DistributedDataParallel) is a module in PyTorch that allows you to train
your model across multiple GPUs or machines efficiently.

How it works:

The model is replicated on each GPU
The dataset is split among the GPUs
Each GPU does forward and backward pass independently
Gradients are synchronized automatically after every batch

All model copies are kept in sync

DDP helps you scale training with minimal code changes, offering both
performance and stability.

Introduction to PyTorch & DDP | poldaf@ics.forth.gr

How DDP Works

DistributedDataParallel works by distributing the training process across
multiple GPUs (or nodes), while keeping all model replicas in sync.

At each training step:
1) Each GPU gets a copy of the model

2) A subset of the dataset is sent to each GPU
3) Each GPU performs:

* Forward pass(compute predictions from inputs.)

* Loss calculation(measures how wrong the predictions are.)
* Backward pass (gradient computation)
4) Gradients are synchronized across all GPUs (all-reduce (NCCL))

5) All models are updated consistently

This process repeats after every batch, ensuring all devices work together as
one.

Introduction to PyTorch & DDP | poldaf@ics.forth.gr

When Should You Use DDP?

DDP is most useful when your model or dataset is too large or too slow to
train on a single machine.

Use DDP when:

You're working with large-scale datasets (e.g. images, video, audio)
Your model is complex and deep (e.g. transformers, CNNs)
Training on one GPU takes too long

You're using multiple GPUs or a cluster/cloud environment
You need to reduce training time significantly

With DDP, training time can go from hours to minutes depending on the
hardware.

Introduction to PyTorch & DDP | poldaf@ics.forth.gr

What DDP is NOT for

While DDP is powerful for distributed training, it is not designed for other
types of parallel processing.

DDP is NOT meant for:
* Model inference (use TorchServe or ONNX instead)
e Serving models in production
* Parallel data processing (use Spark, Dask, or Ray)
* General-purpose multiprocessing

DDP is specialized for training deep learning models, not for deploying or
running them after training.

Introduction to PyTorch & DDP | poldaf@ics.forth.gr

Demo setup

* Dataset: Coco 118,287 images

* Model: ResNet-18 ~11.7M params (pretrained), | only change the FC - 80
classes

* Loss / Optimizer: CrossEntropyLoss/ Adam
e 2 machines with 2 x NVIDIA GeForce RTX 2080 Ti (11264MiB) each

* Task (for simplicity): detection - single-label classification (the 1st
category of the image)

* DDP: DistributedSampler, wrap the model with DDP, launch with torchrun
* Throughput (img/s)
* Batch size= 256

Introduction to PyTorch & DDP | poldaf@ics.forth.gr

How to run

Single machine 1 GPU:
torchrun --standalone
- -nnodes=1
--nproc_per_node=1
demo _coco_resnetl8.py

--coco_1image path /mnt/vol@/poldaf/train2017/
--annotation_path /mnt/vol@®/poldaf/annotations/instances train2017. json
--num_epochs 2

multiple machines:

torchrun

- -nnodes=

--node rank=

--nproc_per_node=

--rdzv_id=123

--rdzv_backend=static

--rdzv_endpoint=

demo_coco_resnetl8.py
--coco_image path /mnt/vol®/poldaf/train2017/
--annotation_path /mnt/vol@/poldaf/annotations/instances train2017.json
--num_epochs 2

Introduction to PyTorch & DDP | poldaf@ics.forth.gr

1gb/s Ethernet vs 56gb/s
InfiniBand

Epoch Step 906
Epoch 1 | Step 911
1gb/s Ethernet: 0] Epoch 1 | Step 911

Epoch : Step 916
Epoch : Step 92:
Epoch 1 Step 921 | Loss: 1.
Epoch 1 complete | Avg loss:
Cleanup complete. Total wall
Cleanup complete. Total wall

o
0

|
|
|
Epoch 1 | Step 916
|
|
|

1] Epoch
56gb/s InfiniBand: @] Epoch
0] Epoch :
1] Epoch :
0] Epoch : Step 92:
1] Epoch 1 Step 921 | Loss:
1] Epoch 1 complete | Avg loss:
@] Cleanup complete. Total wall time: : 24, (1164.994s)
1] Cleanup complete. Total wall time: : 24. (1164.770s)

ad

Step 911 |
Step 911 |
Step 916 |
Step 916 |

|

[= B B = A R W
o o 0o 00 WO

o O

[N 0 T O Y I T QS
CR = T S N [Py S

Introduction to PyTorch & DDP | poldaf@ics.forth.gr

Conclusion & Questions

PyTorch provides a flexible and powerful framework for building deep
learning models.

When your workloads grow, DistributedDataParallel (DDP) helps you scale
training across multiple GPUs or machines — with minimal changes to your
code.

Key takeaways:
e PyTorch is easy to start with and scales well
 DDPisthe go-to method for distributed training
* Use it when working with large datasets or complex models

* Not suitable for inference or general parallel computing

Thank you for your attention!

Introduction to PyTorch & DDP | poldaf@ics.forth.gr

	Διαφάνεια 1: Tutorial: Introduction to PyTorch and DDP
	Διαφάνεια 2: Core Concepts
	Διαφάνεια 3: Core Concepts
	Διαφάνεια 4: Why not just use your laptop/pc?
	Διαφάνεια 5: The Problem with Local Training
	Διαφάνεια 6: What is Distributed Training?
	Διαφάνεια 7
	Διαφάνεια 8
	Διαφάνεια 9: How processes talk to each other in DDP
	Διαφάνεια 10: Why Nccl Ring? (vs Tree/Binary)
	Διαφάνεια 11
	Διαφάνεια 12: What is PyTorch?
	Διαφάνεια 13: Installing and Using PyTorch
	Διαφάνεια 14: A Simple Code Example
	Διαφάνεια 15: A more complicated example
	Διαφάνεια 16: What is DDP (Distributed Data Parallel)?
	Διαφάνεια 17: How DDP Works
	Διαφάνεια 18: When Should You Use DDP?
	Διαφάνεια 19: What DDP is NOT for
	Διαφάνεια 20: Demo setup
	Διαφάνεια 21: How to run
	Διαφάνεια 22: 1gb/s Ethernet vs 56gb/s InfiniBand
	Διαφάνεια 23: Conclusion & Questions

