
Tutorial: Introduction to PyTorch 
and DDP

A beginner-friendly introduction to 
PyTorch, one of the most popular 
libraries for deep learning, and an 
overview of how to scale training 

with Distributed Data Parallel (DDP).
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Core Concepts

PyTorch & Training

• Tensor: multi-dimensional array (like NumPy) that can live on CPU/GPU.

• Model / Layer: functions with learnable weights.

• Forward pass: compute predictions from inputs.

• Loss: measures how wrong the predictions are.

• Gradient (autograd): “how much & in which direction” each weight should 
change to reduce the loss (computed automatically by PyTorch).

• Optimizer: updates weights using the gradients (e.g., SGD, Adam).

• Batch / Mini-batch: small set of samples processed together.

• Epoch: one full pass over the training dataset.
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Core Concepts
Distributed / DDP

• Process / Rank: one OS process per GPU; its global id is the rank.

• Local rank: the GPU index inside the current node.

• World size: total number of processes (usually = total GPUs).

• Backend: comms engine (NCCL for GPUs, Gloo for CPU, MPI on HPC).

• DistributedSampler: shards the dataset so each rank sees a different slice.

• All-reduce (gradient sync): averages gradients across all ranks → identical weights 
everywhere.

• DDP = synchronous data parallel: all ranks step together each batch.

• Throughput (img/s): how many samples per second we process (our demo 
metric).

• Rendezvous (MASTER_ADDR:PORT): how processes find each other when 
launched with torchrun.

• Node rank: the id of each machine in multi-node runs.
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Why not just use your laptop/pc?

Training deep learning models on a personal laptop seems convenient at first.

But as your datasets grow and your models become more complex, the

limitations quickly appear:
• Not enough memory (RAM/VRAM)

• Slow CPU or GPU 

• Long training times

• Overheating and hardware strain

For  realistic or large-scale projects, we need more compute power than a 
laptop or pc can offer.

It’s not just raw speed — it’s time-to-feedback. Faster feedback leads to 
better next iterations/epochs.

This is where distributed training comes in.
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The Problem with Local Training

As your machine learning projects grow, you start working with larger 
datasets and more complex models.
Training locally on a single CPU or GPU becomes a bottleneck and leads to 
several issues:

• Extremely slow training time

• Out-of-memory (OOM) errors

• Limited batch size

• Difficulty experimenting quickly

• Inefficient use of modern hardware resources

These issues make it hard to iterate, experiment, or scale your work 
efficiently.

Takeaway: scaling out = faster feedback, not just raw speed.
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What is Distributed Training?

Distributed training is a method used to speed up model training by spreading the 
workload across multiple devices.
Instead of using just one GPU or machine, you use several working together.

Key ideas:
• Replicate the same model on each GPU (or node)

• Shard the dataset (DistributedSampler) — each GPU sees a different slice

• After each batch, synchronize gradients (NCCL all-reduce)

• Training time is significantly reduced

This approach is essential when working with large-scale models and data.
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How processes talk to each other 
in DDP

• NCCL — GPU-optimized, best choice for NVIDIA multi-GPU / multi-node

• Gloo — CPU-first (simple setup; fine for CPU training or quick tests)

• MPI — integrates with existing MPI stacks on HPC clusters

• MPS — Apple Silicon GPUs (M1/M2+)  It is not backend, its a device.

How to pick:

• Training on NVIDIA GPUs → use NCCL

• CPU-only or quick local tests → use Gloo

• On an MPI-managed HPC cluster → use MPI

• On Mac (M1/M2) → use device "mps"
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Why Nccl Ring? (vs Tree/Binary)
• Ring = neighbors exchange chunks in a loop.Reduce-Scatter then All-

Gather. Bandwidth-optimal, uses all links but Latency ~ 2×(N−1) steps, 
worse while N (GPUs) increase.

• Tree/Binary: lower latency ≈ 2×log₂N steps. Better for small tensors or 
large N; may underutilize bandwidth
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What is PyTorch?

PyTorch is an open-source machine learning framework developed by Meta 
(formerly Facebook).
 It is widely used in both academia and industry for building deep learning 
models.

Why PyTorch?
• Pythonic and intuitive — feels like working with NumPy

• Dynamic computation graphs (eager execution)

• Built-in support for GPUs and automatic differentiation

• Large and active community with rich ecosystem

• Ideal for research and production

PyTorch gives you full control and flexibility when designing, training, and 
deploying AI models.
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Installing and Using PyTorch
You can explore and install PyTorch from the official website:

https://pytorch.org

Once installed, you can:
• Create tensors (multi-dimensional arrays)

• Perform GPU-accelerated operations

• Build and train neural networks

• Use built-in tools for autograd (automatic differentiation)

PyTorch allows you to prototype quickly and scale when needed — all using standard 
Python.
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A Simple Code Example

• With NumPy(CPU only): With PyTorch(CPU or GPU):

Key differences:

• PyTorch supports GPUs (device='cuda')

• You can switch between CPU and GPU easily

• PyTorch integrates seamlessly with deep learning models

• This flexibility is why PyTorch is so powerful for AI workloads 
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A more complicated example

Plain NumPy (manual gradients):              PyTorch (autograd + optimizer):



What is DDP 
(Distributed Data Parallel)?

DDP (DistributedDataParallel) is a module in PyTorch that allows you to train 
your model across multiple GPUs or machines efficiently.

How it works:

• The model is replicated on each GPU

• The dataset is split among the GPUs

• Each GPU does forward and backward pass independently

• Gradients are synchronized automatically after every batch

• All model copies are kept in sync

DDP helps you scale training with minimal code changes, offering both 
performance and stability.
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How DDP Works

DistributedDataParallel works by distributing the training process across 
multiple GPUs (or nodes), while keeping all model replicas in sync.

At each training step:
1) Each GPU gets a copy of the model

2) A subset of the dataset is sent to each GPU

3) Each GPU performs:

• Forward pass(compute predictions from inputs.)

• Loss calculation(measures how wrong the predictions are.)
• Backward pass (gradient computation)

4) Gradients are synchronized across all GPUs ( all-reduce (NCCL) )

5) All models are updated consistently

This process repeats after every batch, ensuring all devices work together as 
one.
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When Should You Use DDP?

DDP is most useful when your model or dataset is too large or too slow to 
train on a single machine.

Use DDP when:

• You're working with large-scale datasets (e.g. images, video, audio)

• Your model is complex and deep (e.g. transformers, CNNs)

• Training on one GPU takes too long

• You're using multiple GPUs or a cluster/cloud environment

• You need to reduce training time significantly

With DDP, training time can go from hours to minutes depending on the 
hardware.
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What DDP is NOT for

While DDP is powerful for distributed training, it is not designed for other 
types of parallel processing.

DDP is NOT meant for:
• Model inference (use TorchServe or ONNX instead)

• Serving models in production

• Parallel data processing (use Spark, Dask, or Ray)

• General-purpose multiprocessing

DDP is specialized for training deep learning models, not for deploying or 
running them after training.
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Demo setup

• Dataset: Coco 118,287 images

• Model: ResNet-18 ~11.7M params (pretrained), I only change the FC → 80 
classes

• Loss / Optimizer: CrossEntropyLoss/  Adam

• 2 machines with 2 x NVIDIA GeForce RTX 2080 Ti ( 11264MiB ) each

• Task (for simplicity): detection → single-label classification (the 1st 
category of the image)

• DDP: DistributedSampler, wrap the model with DDP, launch with torchrun

• Throughput (img/s)

• Batch size= 256
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How to run

Single machine 1 GPU: 

multiple machines: 
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1gb/s Ethernet vs 56gb/s 
InfiniBand
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1gb/s Ethernet:

56gb/s InfiniBand:



Conclusion & Questions

PyTorch provides a flexible and powerful framework for building deep 
learning models.
When your workloads grow, DistributedDataParallel (DDP) helps you scale 
training across multiple GPUs or machines — with minimal changes to your 
code.

Key takeaways:

• PyTorch is easy to start with and scales well

• DDP is the go-to method for distributed training

• Use it when working with large datasets or complex models

• Not suitable for inference or general parallel computing

Thank you for your attention!
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