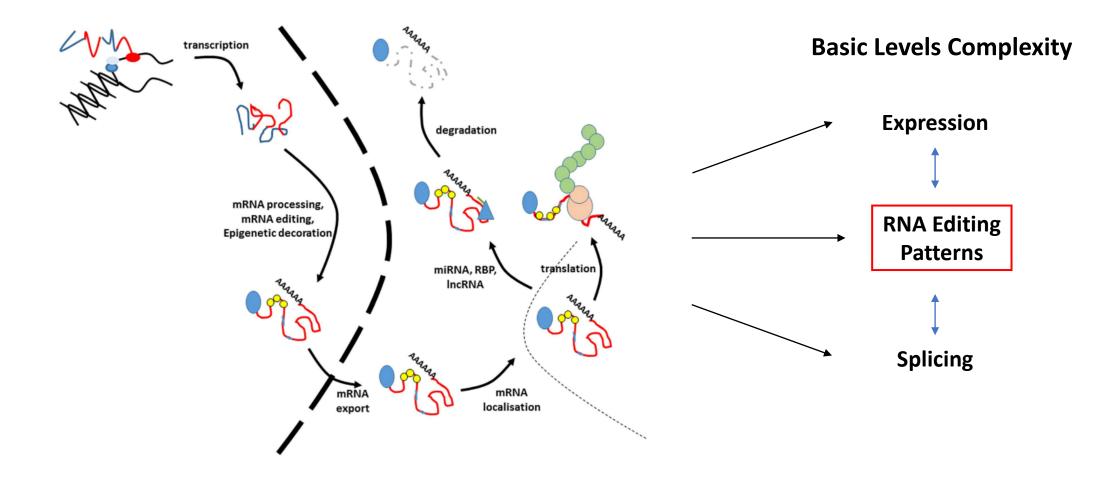
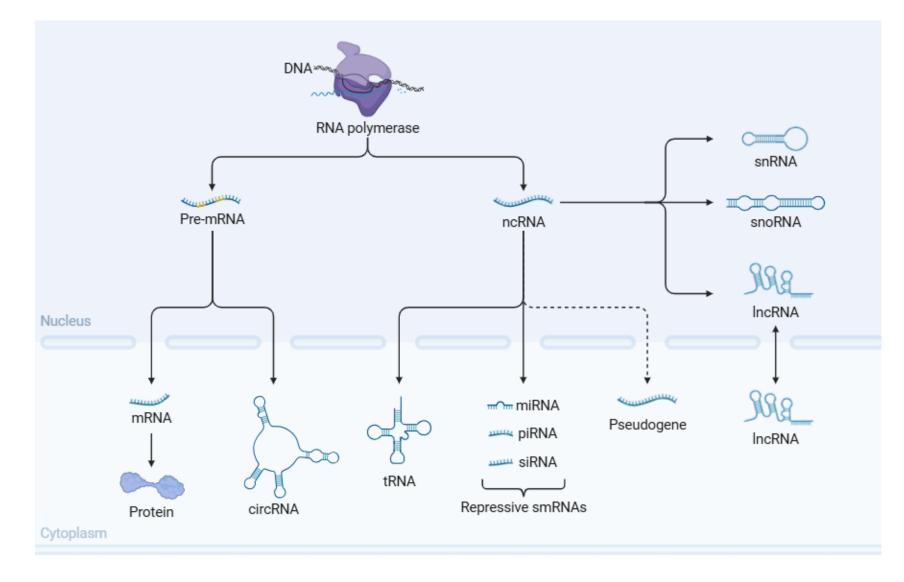


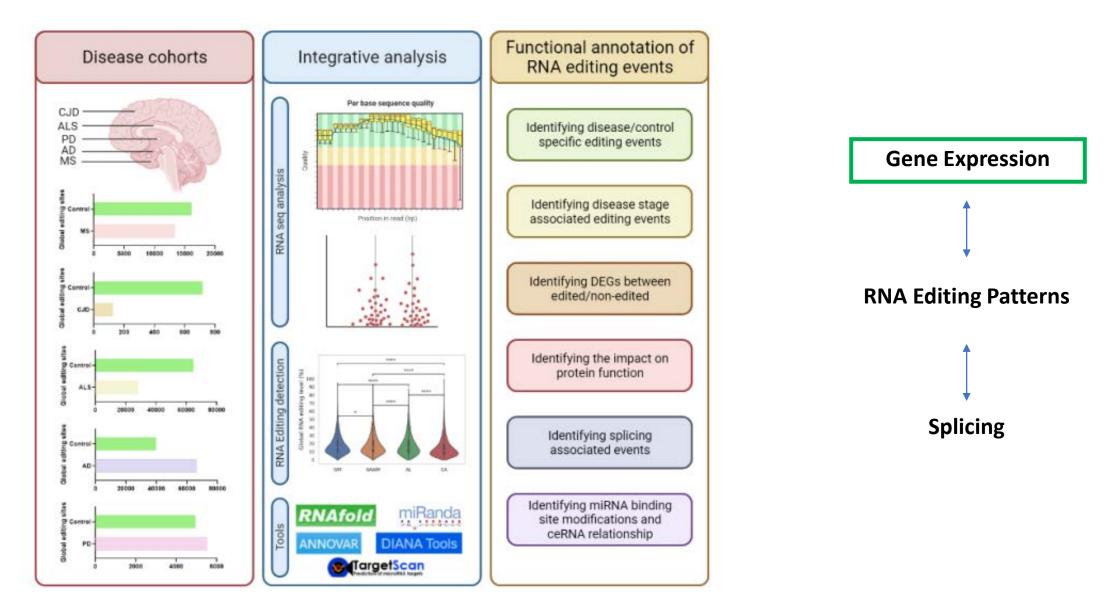
Introduction to RNA-seq Analysis: Basic Concepts in Gene Expression


A Beginner-Friendly Introduction

Korina Karagianni


PhD Candidate in School of Biology, Department of Genetics, Development and Molecular Biology

Supervisor: Associate Professor Dimitra Dafou

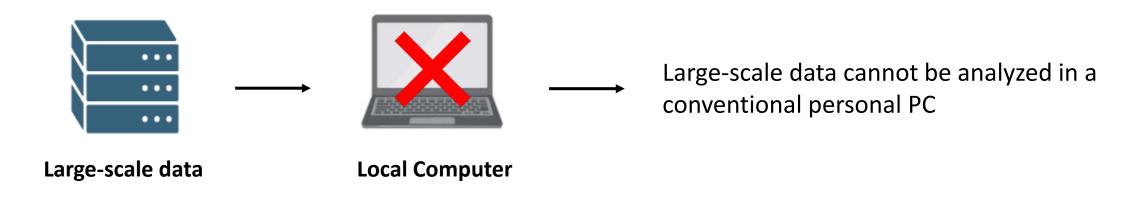

The lifecycle of an RNA

Types of Coding and non-coding RNA


Neurodegenerative Disease Research in Our Lab

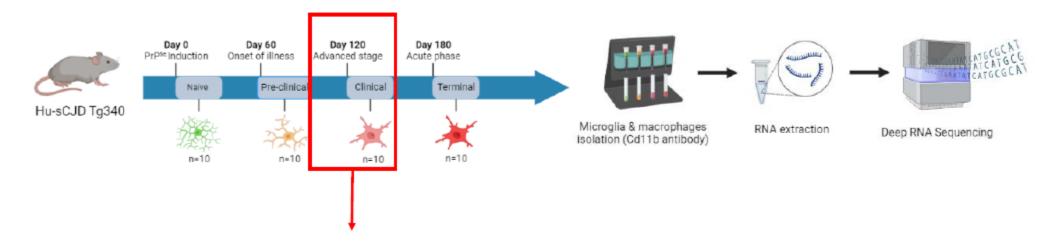
Analyzing RNA-Seq Data: What can gene expression tell us?

- Which genes are over/under-expressed in patients vs healthy controls?
- Which genes are correlated to disease progression?
- Can markers of hidden disease be found by sequencing plasma?
- Gene expression signatures for disease?


Workflow of (m)RNA-seq

Acquiring Relevant RNA-Seq Data

- In-house generated datasets
- Public resources: NCBI SRA, ENA, AMP-AD Knowledge Portal, GEO
- Combining public data with in-house datasets for meta-analysis

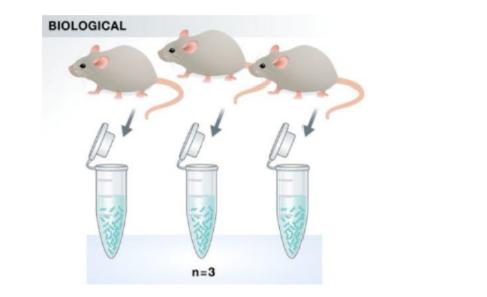

The ARISTOTLE HPC environment

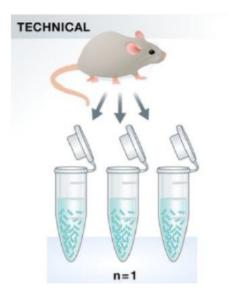
Benefits of the HPC:

- Secure and Extensive Data Storage Easily accessible by the infrastructure's computing resources
- Enhanced Computational Power Significantly faster data processing and analysis
- Parallel Processing Efficient handling of large-scale datasets through parallel computing
- **Broad Software Availability** Access to a wide range of tools and environments (R, Python, both command-line and graphical interfaces)
- Comprehensive Documentation & Technical Support
- Active User Community Share knowledge, troubleshoot, and collaborate

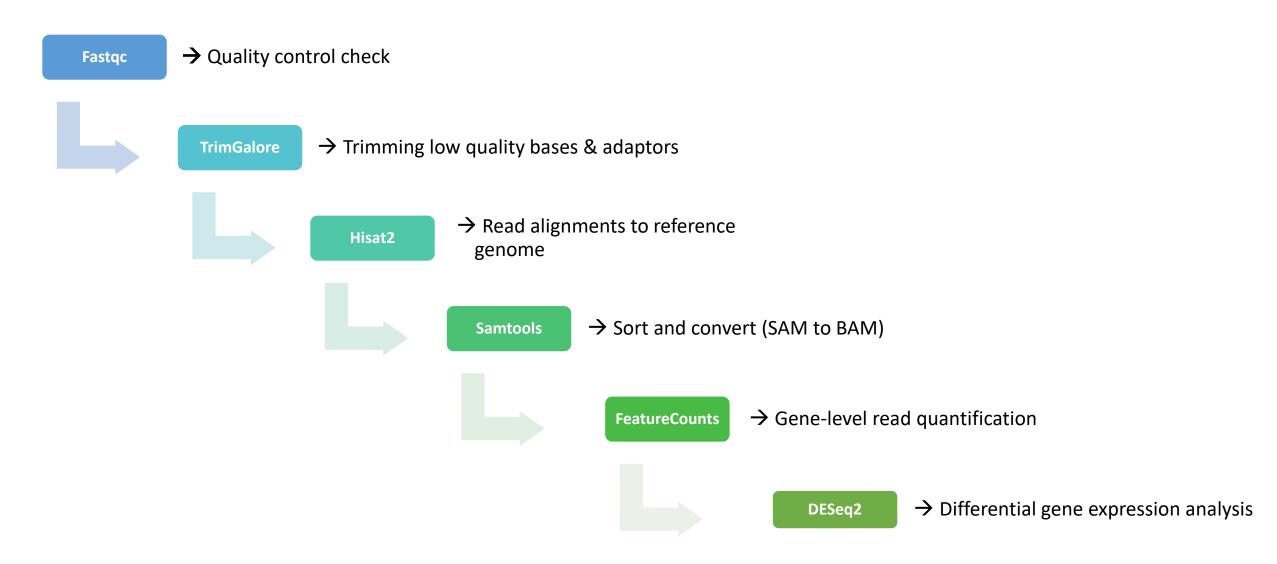
Case study – Study Design

Sample Info


Sample Name	Encoding	Total Reads	Sequence Length	% QC	Ι				
Mic_120_Cntr_01_\$70_L001_R1_001.fastq	Sanger / Illumina 1.9	31.270.281	101	44	٦		-	2 technical replicates	
Mic_120_Cntr_01_\$70_L002_R1_001.fastq	Sanger / Illumina 1.9	31.271.220	101	44		Control	-	2 technical replicates	
Mic_120_Cntr_03_S71_L001_R1_001.fastq	Sanger / Illumina 1.9	33.111.052	101	43	ΙΓ	Control		2 biological and line to a	4
Mic_120_Cntr_03_S71_L002_R1_001.fastq	Sanger / Illumina 1.9	33.015.957	101	43			_	2 biological replicates	
Mic_120_huCJD_01_\$78_L001_R1_001.fastq	Sanger / Illumina 1.9	36.080.949	101	45	ר				
Mic_120_huCJD_01_\$78_L002_R1_001.fastq	Sanger / Illumina 1.9	35.957.965	101	46	IL	Disease	_	2 technical replicates	
Mic_120_huCJD_02_\$79_L001_R1_001.fastq	Sanger / Illumina 1.9	40.078.177	101	45		Disease			4
Mic_120_huCJD_02_\$79_L002_R1_001.fastq	Sanger / Illumina 1.9	40.020.221	101	45	Ĺ		-	2 biological replicates	

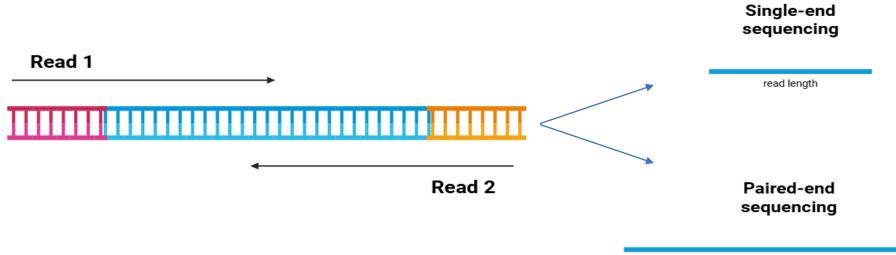

The importance of control groups in biological experiments

- Establish a Baseline: Provide a reference point to compare the effects of the experimental treatment.
- Isolate Variables: Help ensure that observed effects are due to the variable being tested, not external factors.
- Increase Reliability: Enhance the credibility and reproducibility of experimental results.
- Identify Background Noise: Help distinguish true biological effects from random fluctuations or technical artifacts.
- Validate Experimental Setup: Confirm that the methodology and reagents are working as expected.
- **Support Statistical Analysis:** Enable meaningful comparisons and robust statistical conclusions.


Why do we need replicates?

Replicates \rightarrow assess and isolate sources of variation in measurements and limit the effect of spurious variation on hypothesis testing and parameter estimation.

Differential Gene Expression Analysis - Workflow

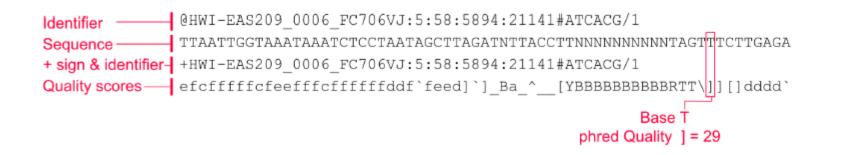


Details on the FASTQ format

What is a FASTQ file?

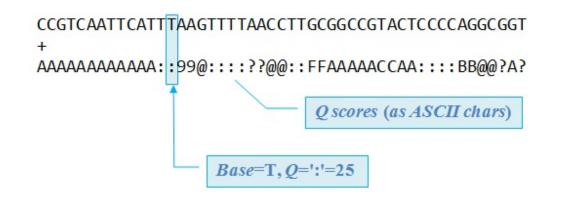
A fastq file is a text-based file for storing both a biological sequence and its corresponding quality scores.

- Single-read run \rightarrow one Read 1 (R1) FASTQ file is created for each sample
- Paired-end run → one Read 1 (R1) and one Read 2 (R2) FASTQ file is created for each sample


Details on the FASTQ format

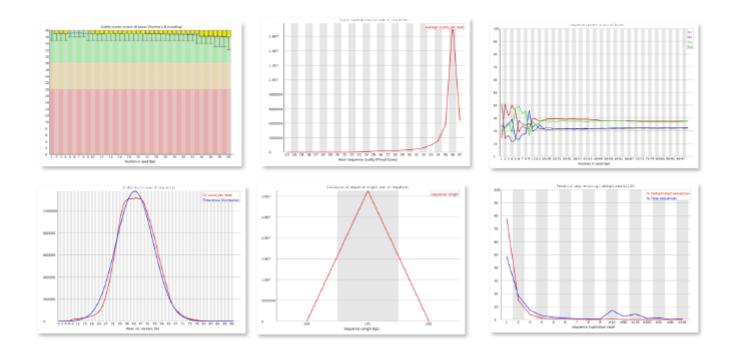
What is a **FASTQ** file?

A fastq file is a text-based file for storing both a biological sequence and its corresponding quality scores.

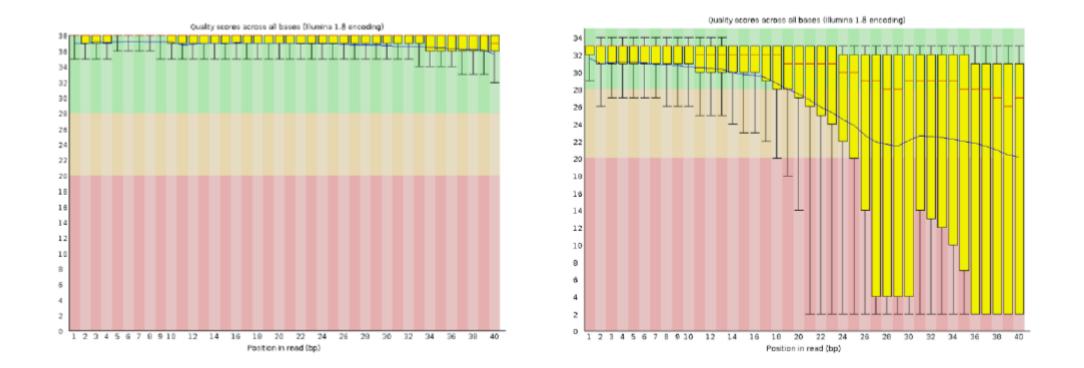

- Single-read run \rightarrow one Read 1 (R1) FASTQ file is created for each sample
- Paired-end run → one Read 1 (R1) and one Read 2 (R2) FASTQ file is created for each sample

What does a FASTQ file look like?

Sequence Quality: Phred Scores

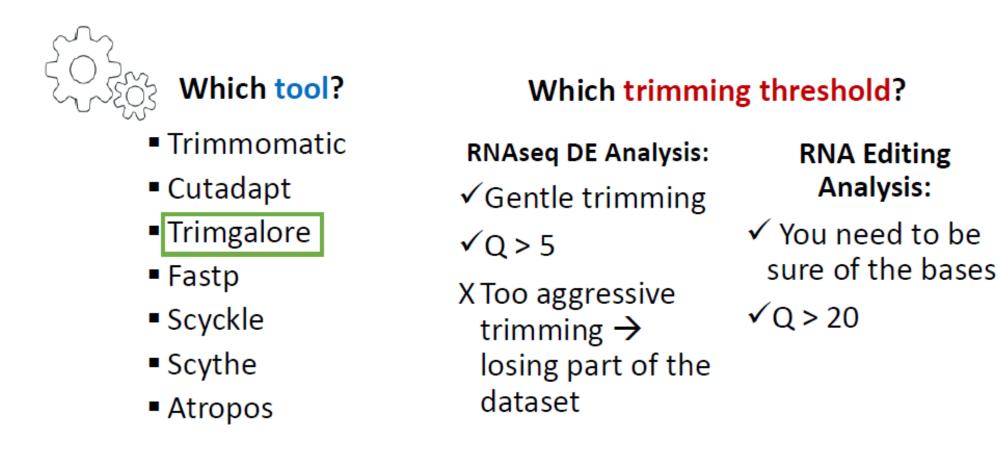


Symbol	ASCII	Q-	Symbol	ASCII	Q-	Symbol	ASCII	Q-
	Code	Score		Code	Score		Code	Score
!	33	0	/	47	14	=	61	28
"	34	1	0	48	15	>	62	29
#	35	2	1	49	16	?	63	30
\$	36	3	2	50	17	@	64	31
%	37	4	3	51	18	А	65	32
&r	38	5	4	52	19	В	66	33
,	39	6	5	53	20	С	67	34
(40	7	6	54	21	D	68	35
)	41	8	7	55	22	Е	69	36
*	42	9	8	56	23	F	70	37
+	43	10	9	57	24	G	71	38
,	44	11	:	58	25	Н	72	39
-	45	12	;	59	26	Ι	73	40
	46	13	<	60	27			


Phred Quality Score	Probability of incorrect base call	Base call accuracy		
10	1 in 10	90%		
20	1 in 100	99%		
30	1 in 1000	99.9%		
40	1 in 10,000	99.99%		
50	1 in 100,000	99.999%		
60	1 in 1,000,000	99.9999%		

Assessing Read Quality: FASTQC

FastQC reads a set of sequence files and produces from each one a quality control report consisting of a number of different modules, each of which will help identify a different potential type of problem in your data.



What is a good read?

The yellow box shows the base-calling quality scores across all sequence reads. The blue line indicates the mean quality score. Q20 = 99% accuracy. Q30 = 99.9% accuracy...

Improving Read Quality – Trimming & Filtering

TrimGalore

- Step 1: Quality trimming
- Step 2: Adapter trimming

Illumina:	AGATCGGAAGAGC					
Small RNA:	TGGAATTCTCGG					
Nextera:	CTGTCTCTTATA					

• Step 3: Removing short Sequences

USAGE: trim_galore [options] <filename(s)>

Basic Options:

--quality <INT> : Trim low-quality ends from reads. --fastqc : Run FastQC in the default mode on the FastQ file once trimming is complete. --adapter <STRING> : Adapter sequence to be trimmed. --illumina : Trim Illumina universal adapter AGATCGGAAGAGC --nextera : Trim Nextera adapter CTGTCTCTTATA --small_rna : Trim Illumina Small RNA 3' Adapter TGGAATTCTCGG --length <INT> : Discard reads that became shorter than a specified length

trim_galore --length 50 --fastqc --cores 4 --quality 25 --output_dir \${Output_Dir} \${RAW_READS}/SRR4447302.fastq

https://github.com/FelixKrueger/TrimGalore/blob/master/Docs/Trim Galore User Guide.md

Read Alignment: Hisat2

HISAT2 is a fast and sensitive alignment program for mapping next-generation sequencing reads to a population of human genomes as well as to a single reference genome.

USAGE:

hisat2 [options] -x <hisat2-idx> {-1 <m1> -2 <m2> | -U <r> | --sra-acc <SRA accession number>} [-S <hit>]

Main arguments:

- -x <hisat2-idx>: The basename of the index for the reference genome.
- -1 <m1>: Comma-separated list of files containing mate 1s (filename usually includes _1).
- -2 <m2>: Comma-separated list of files containing mate 2s (filename usually includes _2).
- -U <r>: Comma-separated list of files containing unpaired reads to be aligned.
- --sra-acc <SRA accession number>: Comma-separated list of SRA accession numbers.
- -S <hit>: File to write SAM alignments to.

hisat2 -x \${Reference_Genome} -U \${TRIMMED_READS}/SRR4447292.fq -S SRR4447292.sam

Samtools

Samtools is a suite of programs for interacting and processing next-generation sequencing data.

Dara manipulation: Efficiently handles large sequencing datasets. Utilities for Data Analysis: Provides tools for alignment, sorting, indexing, and variant calling. Integration: Works seamlessly with other bioinformatics tools and pipelines.

Samtools supports various file formats essential for sequence data analysis:

- **SAM** (Sequence Alignment/Map): A text-based format for storing sequence alignment data.
- **BAM** (Binary Alignment/Map): A binary format that is more efficient and compact than SAM.
- **CRAM** (Compressed Reference-oriented Alignment/Map): A highly compressed format for storing alignment data).

Samtools

Samtools is a suite of programs for interacting and processing next-generation sequencing data.

USAGE (sort and convert SAM files to BAM):

samtools sort -o sorted_output.bam input.sam

Main arguments:

sort: Sort alignments by leftmost coordinates.

- -o: specifies the file name of the BAM output file.
- -@: specifies the number (n) of threads to be used.

samtools sort -@ 8 -o \${OUTPUT_OF_SAMTOOLS}/SRR4447292.bam \${OUTPUT_OF_HISAT}/SRR4447292.sam

Gene-level Quantification: FeatureCounts

FeatureCounts is a highly efficient general-purpose read summarization program that counts mapped reads for genomic features such as genes, exons, promoter, gene bodies, genomic bins and chromosomal locations.

USAGE:

featureCounts -O -T n -a example_genome_annotation.gtf -o example_featureCounts_output.txt sorted_example_alignment.bam

Main arguments: .

- -O: assigns reads to all their overlapping meta-features.
- -T: specifies the number (n) of threads to be used.
- -a: genome annotation file (in gtf format).
- -o: specifies the name of the output file, which includes the read counts.

sorted_example_alignment.bam: the reads we want to count are aligned to the same genome as the annotation file.

featureCounts -O -T 4 -a \${GTF_FILE} -o SRR4447292_featurecounts.txt \${OUTPUT_OF_SAMTOOLS}/SRR4447292.bam

Differential Expression: DESeq2

DESeq2 is a widely used R/Bioconductor package for analyzing differential gene expression from RNA sequencing data.

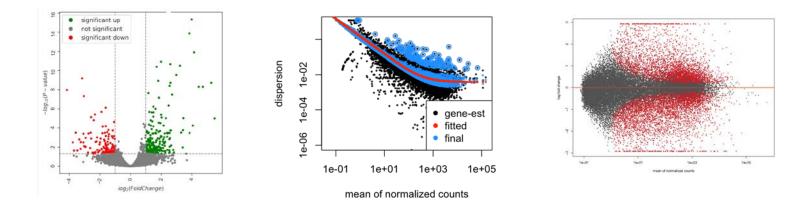
(1) What does DESeq2 do?

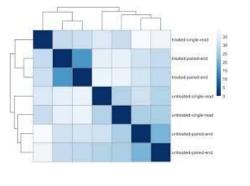
It helps you identify which genes are significantly upregulated or downregulated between different experimental conditions (e.g., treated vs. untreated, control vs. disease).

How DESeq2 works?

- 1. Takes raw counts (not normalized) as input.
- 2. Normalizes the data to correct for sequencing depth and RNA composition.
- 3. Estimates dispersion (biological variability).
- 4. Fits a model (negative binomial GLM) for each gene.
- 5. Performs statistical tests to compare conditions.
- 6. Returns results, including Log2 fold changes (expression difference), p-values and adjusted p-values (FDR).

DESeq2 Results


baseMean 💌	log2FoldChange 👻	lfcSE <	stat 💌	pvalue 👻	padj 🚽	ensembl 🚽	entrez 🛛 👻	hgnc_symbol
3,088906664	0,17360386	1,330028704	0,130526401	0,896149968		ENSG00000279928		DDX11L17
2018,092198	-0,917883375	0,15340521	-5,983391161	2,18539E-09	3,99921E-07	ENSG00000142611	63976	PRDM16
1276,136007	0,089638059	0,150945089	0,593845478	0,552615469	0,906920199	ENSG00000157911	5192	PEX10
0						ENSG00000224340		RPL21P21
5,120093477	-1,458804625	0,993921711	-1,467725887	0,142178696		ENSG00000226374	105376672	LINC01345
0,227160238	0,750505043	4,55612132	0,164724552	0,869160791		ENSG00000229280		EEF1DP6
572,6635026	-0,092323219	0,286918039	-0,321775581	0,747622715	0,958581976	ENSG00000142655	5195	PEX14
0						ENSG00000232596		LINC01646
0						ENSG00000235054	284661	LINC01777
0						ENSG00000231510		LINC02782
5398,53925	-0,506210352	0,234528343	-2,158418665	0,030895296	0,254806092	ENSG00000149527	9651	PLCH2
684,3607612	-0,549461758	0,153885863	-3,570579821	0,000356192	0,010538345	ENSG00000171621	80176	SPSB1
1,191537866	-1,285993705	2,209136243	-0,582125122	0,560482405		ENSG00000142583	6518	SLC2A5
0						ENSG00000284674	105376680	LINC02781
0,731511629	-1,510303378	3,029456824	-0,498539331	0,618103955		ENSG00000224338		MTCYBP45
3,193664073	0,379589493	1,193031184	0,318172314	0,750354232		ENSG00000226457		RPL22P3
326,366812	0,026592669	0,169574632	0,156819851	0,875386827	0,978269215	ENSG00000173614	64802	NMNAT1
0						ENSG00000215720		MFFP1
0,176745512	-0,660961898	4,562152922	-0,144879382	0,884806105		ENSG00000233623		PGAM1P11
44,88914369	0,103445712	0,340813949	0,303525463	0,761489445	0,95876169	ENSG00000162592	148870	CCDC27
1337,362833	-0,445726517	0,251106711	-1,775048208	0,075889928	0,422025598	ENSG00000204624	57540	DISP3
424,2074237	-0,349026837	0,225657074	-1,546713474	0,121932353	0,537198046	ENSG00000142606	79258	MMEL1
4,801835555	-0,284488298	0,966672631	-0,294296424	0,768531405		ENSG00000171729	55092	TMEM51
31,50910723	0,301846973	0,599932804	0,503134637	0,614869616	0,924803147	ENSG00000279457		WASH9P
1762,813582	0,061000321	0,138665076	0,439911204	0,660001421	0,935260788	ENSG0000037637	54455	FBXO42
872,0717017	-0,164487615	0,233265197	-0,705152834	0,48071513	0,877414463	ENSG00000159423	8659	ALDH4A1
2796,059575	-0,020226542	0,104126924	-0,194248917	0,845980982	0,974171556	ENSG00000157916	11079	RER1


Differential Expression: DESeq2

DESeq2 is a widely used R/Bioconductor package for analyzing differential gene expression from RNA sequencing data.

What are the key features of DESeq2?

- 1. Handles biological replicates
- 2. Adjusts for multiple testing (Benjamini-Hochberg)
- 3. Supports complex experimental designs
- 4. Offers tools for visualization (e.g., PCA, MA-plots, heatmaps)

