
Populations Genomics 
 

 

General context 
The analysis workflow—including quality control (QC) of raw sequencing data, read trimming, 

mapping to a reference genome, QC of mapping results, and PCR deduplication—is broadly 

applicable across various sequencing approaches. In this example, we use paired-end Illumina 

ddRAD-Seq data (150 bp reads), generated from individual samples sequenced at moderate 

coverage. While downstream analyses beyond SNP calling may vary depending on the 

experimental design and research objectives, the initial processing steps are consistent and form 

the foundation for high-quality data analysis. 

Although the specific example provided here focuses on a ddRAD-Seq project, the same initial 

steps can be applied to other types of sequencing datasets. For instance, a similar strategy is 

commonly used for SNP variant calling in whole-genome sequencing (WGS) projects. However, 

it is important to note that no single pipeline is universally optimal for all sequencing data types, 

biological models, or research goals. For moderate- to high-coverage data, the tools and workflows 

presented here are generally effective. In contrast, different approaches may be more suitable for 

low-coverage samples. The examples offered here serve as a guide, and while default parameters 

(e.g., for read mappers like BWA-MEM) typically perform well for most species, adjusting 

parameters may be necessary based on the specific biological and technical context. 

 
Notes for HPC before start 
#On an HPC server (typically a Linux-based system), you can visualize directories and 
subdirectories as a tree structure using the tree command. 
 
tree -d <dirname> 
 
squeue -u <username> 
 
# sacct -j <jobID> --format=JobID,Elapsed,TotalCPU,AllocCPUs,CPUTime,MaxRSS 
# seff <jobID> 
# sacct -u ksagonas -S <jobID> 
# sinfo -p batch -N -o "%4N %8O %t" -n <compute node> 

 

Step 1: Quality control of raw sequencing data 

Assuming that raw sequencing data have already been downloaded or are otherwise available, the 

first step in any analysis pipeline is to assess the quality of the data using tools such as FastQC 

and MultiQC. FastQC generates detailed reports on a range of quality metrics, including per-base 

quality scores, GC content, adapter contamination, and sequence duplication levels. These reports 

help identify potential problems that could compromise downstream analyses. 

After running FastQC on each individual sample, we recommend using MultiQC to aggregate 

the results into a single, comprehensive summary. MultiQC enables rapid identification of patterns 

and shared quality issues across all samples, allowing you to make informed decisions about 



whether additional preprocessing—such as trimming or filtering—is necessary. Although 

trimming is often considered optional depending on data quality, we recommend performing read 

trimming in all cases to ensure consistency and improve downstream performance. 

Evaluating raw data quality is a critical first step in any genomic analysis workflow. It provides 

a quick, global overview of dataset integrity and helps ensure the reliability and accuracy of 

subsequent steps in the pipeline. 

In our example, these analyses are performed in parallel, not sequentially, which allows for 

greater efficiency when handling multiple samples. 

 

SLURM Batch Script: fastqc_array.sbatch 
#!/bin/bash 
#SBATCH --partition=batch 
#SBATCH --time=15:00 
#SBATCH --job-name=fastqc_parallel 
#SBATCH --output=fastqc_parallel_%j.out 
#SBATCH --error=fastqc_parallel_%j.err 
#SBATCH --ntasks=4 
#SBATCH --mem=4G 
 
set -euo pipefail 
 
# Load necessary modules 
module load gcc/14.2.0 fastqc/0.12.1 
 
# Define input and output directories 
OUT_DIR=/mnt/sagonas_a/PopGen_HPC/02FastQC_reports/00RawReads 
IN_DIR=/mnt/sagonas_a/PopGen_HPC/00RawReads 
 
# Create output directory if it doesn't exist 
mkdir -p "$OUT_DIR" 
 
# Use SLURM_NTASKS if defined, fallback to 1 
THREADS=${SLURM_NTASKS:-1} 
 
# Run FastQC in parallel using GNU parallel 
find "$IN_DIR" -name "*.fastq.gz" | parallel -j "$THREADS" fastqc -t 1 -o "$OUT_DIR" {} 

 

Step 2: Trimming Raw Sequence Reads 

Trimming is a crucial preprocessing step in next-generation sequencing (NGS) data analysis. It 

involves removing low-quality bases, sequencing adapters, and other unwanted sequences (such 

as overly short reads after trimming) from raw data. This step helps ensure that only high-quality 

reads proceed to downstream analysis, thereby improving the accuracy of read mapping, variant 

calling, and other bioinformatics processes. Trimming addresses common issues such as low-

quality read ends and residual adapter contamination, both of which can distort alignment and 

reduce confidence in analytical results. 



Several tools are available for trimming, each with its strengths. Trimmomatic is a widely used 

and versatile tool that offers a range of trimming operations with support for paired-end data and 

multiple filtering criteria. However, Cutadapt has gained popularity due to its speed, simplicity, 

and precision in adapter removal. Cutadapt offers more flexible adapter matching options, better 

handling of variable-length adapters, and seamless integration into modern workflow managers 

and Python-based pipelines. In cases where accurate and customizable adapter trimming is 

critical—such as in RAD-seq or amplicon sequencing—Cutadapt is often preferred. It also 

supports trimming based on quality scores and can discard reads that fall below a specified length 

threshold after trimming, making it well-suited for high-throughput datasets with variable-quality 

reads. 

In this workflow, we use Cutadapt for its efficiency and adaptability to the specific 

characteristics of our sequencing data. In the following step we will use fastqc again to assess the 

success of Cutadapt (script not given). 

 

SLURM Batch Script: cutadapt_array.sbatch 
#!/bin/bash 
#SBATCH --partition=batch 
#SBATCH --job-name=cutadapt 
#SBATCH --ntasks=1 
#SBATCH --cpus-per-task=4 
#SBATCH --mem=8G 
#SBATCH --time=01:00:00 
#SBATCH --output=cutadapt_%A_%a.out 
#SBATCH --error=cutadapt_%A_%a.err 
#SBATCH --array=0-29%6  # Update to match number of samples - 1 
 
set -euo pipefail 
 
module load gcc/13.2.0-iqpfkya py-cutadapt/4.7-eavfyng 
 
cd /mnt/sagonas_a/PopGen_HPC/00RawReads 
ls *_R1.fastq.gz | sed 's/_R1.fastq.gz//' > /mnt/sagonas_a/PopGen_HPC/samples.txt 
 
cd /mnt/sagonas_a/PopGen_HPC 
 
SAMPLE=$(sed -n "$((SLURM_ARRAY_TASK_ID + 1))p" samples.txt) 
IN_DIR=/mnt/sagonas_a/PopGen_HPC/00RawReads 
OUT_DIR=/mnt/sagonas_a/PopGen_HPC/01TrimmedReads 
 
#mkdir -p "$OUT_DIR" 
 
cutadapt -q 20 --quality-base 33 -m 50 \ 
  -a AGATCGGAAGAGCACACGTCTGAACTCCAGTCA -A 
AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT \ 
  -o "$OUT_DIR/${SAMPLE}_R1_trimmed.fastq.gz" \ 
  -p "$OUT_DIR/${SAMPLE}_R2_trimmed.fastq.gz" \ 
  "$IN_DIR/${SAMPLE}_R1.fastq.gz" "$IN_DIR/${SAMPLE}_R2.fastq.gz" 



 
 

Step 3: Mapping reads against a reference genome 

Bowtie2 and BWA-MEM are both widely used tools for aligning sequencing reads to a reference 

genome, each with specific strengths. Generally, both perform comparably and can be used on the 

same types of sequencing data. 

Bowtie2 is highly efficient and flexible, particularly for aligning short to medium-length reads. It 

performs well in handling mismatches and small indels, making it a preferred tool for datasets such 

as RNA-seq and metagenomics, where these challenges are common. 

BWA-MEM, on the other hand, is designed for longer reads—like those from Illumina paired-end 

sequencing or even some third-generation platforms. It excels in accurate gapped alignments and 

is particularly robust in complex genomic regions. As such, it is often favored for whole-genome 

resequencing, structural variant detection, and other high-precision applications. 

In this tutorial, we focus on BWA-MEM2, an improved version of BWA-MEM that offers faster 

alignment and lower memory usage. While Bowtie2 remains a strong alternative, BWA-MEM2 is 

especially well-suited for the paired-end Illumina ddRAD-Seq data used in this workflow. 

 

Reference Indexing 

Before alignment, most read mappers require the reference genome to be indexed—a 

preprocessing step that builds data structures for efficient access during mapping. It’s important to 

note that different tools use different indexing formats, so index files are not interchangeable 

between software. Always check for errors in the logs when running new tools, especially when 

using pre-existing indexes. 

With BWA-MEM2, indexing is straightforward but memory-intensive. To simplify this step, pre-

built indexes are provided in the same directory as the reference genome. Below is an example 

SLURM batch script (reference_index.sbatch) used to generate the required index files: 

 

SLURM Batch Script: reference_index.sbatch 
#!/bin/bash 
#SBATCH --partition=batch 
#SBATCH --time=1:00:00 
#SBATCH --job-name=indexing 
#SBATCH --output=indexing.out 
#SBATCH --error=indexing.err 
#SBATCH --mem=8G   
 
# Indexing the reference genome using samtools faidx and bwa index options. This step is 
neccessary for mapping the reads to the reference genome 
 
module load gcc/13.2.0-iqpfkya samtools/1.19.2-wqjp7os bwa/0.7.17-remh23z 
 
REFERENCE=/mnt/sagonas_a/PopGen_HPC/03ReferenceGenome/GCA_964106915.1_rPodGai
1.hap1.1_genomic.fa 
 
bwa index $REFERENCE 



samtools faidx $REFERENCE 
 
# Run Picard to generate the dict file for variant calling with GATK 
module load gcc/8.2.0 r-rjava/0.9-11 picard/2.18.3 
 
java -jar $PICARD_ROOT/bin/picard.jar CreateSequenceDictionary R=$REFERENCE 
O=$REFERENCE.dict 
 
# The output will look like this 
#reference.fasta 
#reference.fasta.fai           samtools index 
#reference.dict                    GATK/Picard 
#reference.fasta.bwt        bwa index 
#reference.fasta.pac        bwa index 
#reference.fasta.ann        bwa index 
#reference.fasta.amb       bwa index 
#reference.fasta.sa            bwa index 

 
Read Alignment 

After indexing, reads can be aligned to the reference genome using the bwa mem algorithm. Below 

is an SLURM array job script to process multiple samples in parallel. 

 
SLURM Batch Script: bwa_index.sbatch 
#!/bin/bash 
#SBATCH --partition=batch 
#SBATCH --job-name=bwa_align 
#SBATCH --ntasks=1 
#SBATCH --cpus-per-task=4 
#SBATCH --mem=8G 
#SBATCH --time=01:00:00 
#SBATCH --output=bwa_%A_%a.out 
#SBATCH --error=bwa_%A_%a.err 
#SBATCH --array=0-29%6  # Update to match number of samples - 1 
 
set -euo pipefail 
 
module load gcc/13.2.0-iqpfkya samtools/1.19.2-wqjp7os bwa/0.7.17-remh23z 
 
cd /mnt/sagonas_a/PopGen_HPC 
 
SAMPLE=$(sed -n "$((SLURM_ARRAY_TASK_ID + 1))p" samples.txt) 
REFERENCE=/mnt/sagonas_a/PopGen_HPC/03ReferenceGenome/GCA_964106915.1_rPodGai
1.hap1.1_genomic.fa 
IN_DIR=/mnt/sagonas_a/PopGen_HPC/01TrimmedReads 
OUT_DIR=/mnt/sagonas_a/PopGen_HPC/04AlignedReads 
STATS=$OUT_DIR/Alignment_statistics 
 
mkdir -p $STATS 



 
bwa mem -t $SLURM_CPUS_PER_TASK $REFERENCE \ 
  $IN_DIR/${SAMPLE}_R1_trimmed.fastq.gz \ 
  $IN_DIR/${SAMPLE}_R2_trimmed.fastq.gz \ 
  | samtools view -Sb - \ 
  | samtools sort -@ $SLURM_CPUS_PER_TASK -o $OUT_DIR/${SAMPLE}.sorted.bam 
 
samtools index $OUT_DIR/${SAMPLE}.sorted.bam 
samtools flagstat $OUT_DIR/${SAMPLE}.sorted.bam > $STATS/${SAMPLE}.flagstat.txt 
# samtools stats $OUT_DIR/${SAMPLE}.sorted.bam > $STATS/${SAMPLE}.stats.txt 
 
# Note: For large sequencing datasets, deleting unnecessary files (e.g. unsorted BAM files) once 
they are no longer needed helps free up valuable storage space on your computing cluster  
 
# QC based on the results of mapping 
# Performing quality control after read mapping is a critical step to assess the success of the 
alignment process and ensure reliable downstream analyses. Tools like Samtools flagstat, 
Samtools idxstats and Bamtools stats, provide valuable insights into the quality and distribution 
of mapped reads. All tools summarize key alignment statistics, such as the total number of reads, 
the proportion mapped to the reference genome, and the fraction of properly paired reads in 
paired-end reads sequencing data. These metrics help evaluate alignment efficiency and identify 
potential issues, such as low-quality mappings or unexpected levels of unmapped reads. 
 
# Alternatively we can use bamtools stats similar to samtools flagstat 
# bamtools stats -in $OUT_DIR/${SAMPLE}.sorted.bam > $STATS/${SAMPLE}.aligned.stats.txt 
 
# Samtools idxstats is another valuable tool to have an overview of the mapping. It provides per-
chromosome statistics about mapped and unmapped reads relative to the length of each 
scaffold in the reference assembly. The output consists of four columns: scaffold name, scaffold 
length, the number of mapped reads, and the number of unmapped reads. However, it’s 
important to note that the term "unmapped reads" in this context can be somewhat misleading - 
it refers to reads assigned to a chromosome but with low-confidence alignments, such as low-
quality mappings or secondary alignments. By analyzing the idxstats output, researchers can 
assess genome coverage by dividing the number of reads by the scaffold length and identify 
potential issues, such as uneven coverage, due to over-represented contigs or contamination. 
This makes idxstats an essential step in ensuring the quality and reliability of mapped sequencing 
data. 
 
samtools idxstats $OUT_DIR/${SAMPLE}.sorted.bam > $STATS/${SAMPLE}.idxstats.txt 

 
 
Post-Mapping Quality Control 

Evaluating the success of read mapping is a crucial step before variant calling or other downstream 

analyses. Several tools provide alignment statistics to help assess data quality: 

• samtools flagstat: Summarizes total reads, mapped reads, properly paired reads, and other 

essential metrics. 

• samtools stats: Offers more detailed statistics, including insert size, mapping quality 

distributions, and error rates. 



• bamtools stats: An alternative that provides similar summary statistics in a different format. 

• samtools idxstats: Reports per-chromosome statistics, including mapped/unmapped reads 

and scaffold lengths. Note: "unmapped" here may include low-quality or secondary 

alignments. 

 

These statistics help identify problems like low alignment rates, adapter contamination, 

overrepresented scaffolds, or potential contamination. For example, genome coverage can be 

estimated by dividing the number of mapped reads by scaffold length, aiding in the detection of 

uneven coverage or technical biases. 

 
 
Step 4: Removing PCR duplicates 

Marking PCR duplicates is an essential part of sequencing data processing, particularly in whole-

genome sequencing (WGS) workflows. PCR amplification during library preparation can generate 

duplicate reads originating from the same DNA fragment, which may bias downstream analyses, 

such as variant calling. Marking duplicates—rather than removing them—allows tools to flag such 

reads (typically with the 0x400 SAM flag), preserving all information for flexible downstream 

interpretation. 

One of the most commonly used tools for this task is Picard's MarkDuplicates, which 

identifies duplicates based on read start/end positions and outputs both a deduplicated BAM file 

and a metrics file summarizing duplication levels. While Samtools markdup is a faster and more 

lightweight alternative, especially useful on HPC clusters for large datasets, Picard is often 

preferred for final pipelines due to its detailed output and community trust. However, keep in mind 

that Picard uses java that might further delay the analyses. 

However, the importance of duplicate marking varies by experimental design. For 

example, in RAD-Seq data, especially with single-digest protocols, reads often share identical start 

positions not because they are PCR duplicates, but due to the nature of the protocol. Similarly, 

single-end sequencing reads can have overlapping coordinates despite originating from unique 

fragments. In these cases, overly aggressive duplicate marking can remove valid data, so decisions 

should be tailored to the specific project. 

 

In this workflow, we use both Samtools and Picard for duplicate marking. Samtools is 

used initially for speed, followed by Picard for comprehensive metrics. 

 

Important Note – Read Groups for GATK Compatibility 

For downstream tools like GATK HaplotypeCaller and BaseRecalibrator, it's critical that all 

BAM files contain read group (RG) tags. These tags identify metadata about the origin of each 

read and must include the following fields: 

• ID (Read Group ID) 

• SM (Sample name) 

• LB (Library) 

• PL (Platform, e.g., ILLUMINA) 

• PU (Platform Unit) 



 

Without proper RG tags in the BAM header and reads, GATK will fail or report errors. Therefore, 

after marking duplicates, we use Picard AddOrReplaceReadGroups to ensure all BAM files are 

correctly annotated for compatibility with GATK and other downstream tools. 

 

SLURM Batch Script: AddTags.sbatch 
#!/bin/bash 
#SBATCH --partition=batch 
#SBATCH --job-name=markdup 
#SBATCH --ntasks=1 
#SBATCH --cpus-per-task=4 
#SBATCH --mem=16G 
#SBATCH --time=01:00:00 
#SBATCH --output=markdup_%A_%a.out 
#SBATCH --error=markdup_%A_%a.err 
#SBATCH --array=0-14%6  # Update to match number of samples - 1 
 
# Duplicates can bias downstream analyses, like variant calling, by inflating read counts 
artificially and causing false positives. Here we use samtools fixmate as a command that corrects 
mate pair information in a BAM file. It's specifically used after sorting the BAM file by read name 
(samtools sort -n) and before marking duplicates using samtools markdup. When dealing with 
paired-end reads, it's important that the metadata about each read and its mate (e.g. flags, 
template length, mate positions) is consistent and accurate. If this information is missing or 
incorrect, samtools markdup cannot reliably identify duplicates, and downstream tools may 
produce errors or misleading results. 
 
set -euo pipefail 
 
module load gcc/13.2.0-iqpfkya samtools/1.19.2-wqjp7os 
 
cd /mnt/sagonas_a/PopGen_HPC 
 
SAMPLE=$(sed -n "$((SLURM_ARRAY_TASK_ID + 1))p" samples.txt) 
IN_DIR=/mnt/sagonas_a/PopGen_HPC/04AlignedReads 
OUT_DIR=/mnt/sagonas_a/PopGen_HPC/04AlignedReads/Dedup/Samtools 
 
mkdir -p "$OUT_DIR" 
 
# Sort by read name (queryname) and write to a temp file 
samtools sort -n -o $IN_DIR/${SAMPLE}.name_sorted.bam $IN_DIR/${SAMPLE}.sorted.bam 
 
# Run fixmate on the name-sorted BAM, output another temp BAM 
samtools fixmate -m $IN_DIR/${SAMPLE}.name_sorted.bam $IN_DIR/${SAMPLE}.fixmate.bam 
 
# Sort fixmate output by coordinate, final BAM before markdup 
samtools sort -o $IN_DIR/${SAMPLE}.coord_sorted.bam $IN_DIR/${SAMPLE}.fixmate.bam 
 
# Mark duplicates on coordinate sorted BAM and output final dedup BAM 



samtools markdup -r $IN_DIR/${SAMPLE}.coord_sorted.bam $OUT_DIR/${SAMPLE}.rmdup.bam 
 
# Index final BAM 
samtools index $OUT_DIR/${SAMPLE}.rmdup.bam 
 
# Optional: remove intermediate files to save space 
rm $IN_DIR/${SAMPLE}.name_sorted.bam $IN_DIR/${SAMPLE}.fixmate.bam 
$IN_DIR/${SAMPLE}.coord_sorted.bam 
 
# Alternatively, we can run Picard to remove/flag Duplicates. For large-scale production and 
variant calling, Picard’s MarkDuplicates is often preferred because of its comprehensive metrics 
and community trust. For quick or lightweight workflows, especially on HPC systems, samtools 
markdup is a fine alternative. Some pipelines use both: samtools for marking duplicates quickly 
during early steps, Picard for final, detailed duplicate marking before variant calling. 
 
OUT_DIR=/mnt/sagonas_a/PopGen_HPC/04AlignedReads/Dedup/Picard 
PICARD_STATS=$OUT_DIR/Stats 
 
mkdir -p $PICARD_STATS 
 
module load gcc/8.2.0 r-rjava/0.9-11 picard/2.18.3 
 
java -Xmx16G -jar $PICARD_ROOT/bin/picard.jar MarkDuplicates \ 
I=$IN_DIR/${SAMPLE}.sorted.bam \ 
O=$OUT_DIR/${SAMPLE}.pcd.rmdup.bam \ 
M=$PICARD_STATS/${SAMPLE}.pcd.rmdup.metrics.txt \ 
REMOVE_DUPLICATES=false CREATE_INDEX=true 
 
# Each read in the BAM must have an associated read group, with the following fields set in the 
BAM header and applied to each read via the @RG tag. ReadGroupID, Library, Platform, 
Samplename, and Unit. Without RG tags, tools like HaplotypeCaller and BaseRecalibrator will fail 
 
IN_DIR=/mnt/sagonas_a/PopGen_HPC/04AlignedReads/Dedup/Samtools 
OUT_DIR=/mnt/sagonas_a/PopGen_HPC/04AlignedReads/Dedup/Samtools/RG 
 
mkdir -p $OUT_DIR 
 
java -Xmx16G -jar $PICARD_ROOT/bin/picard.jar AddOrReplaceReadGroups \ 
    I=$IN_DIR/${SAMPLE}.rmdup.bam \ 
    O=$OUT_DIR/${SAMPLE}.rg.rmdup.bam \ 
    RGID=$SAMPLE \ 
    RGLB=lib1 \ 
    RGPL=ILLUMINA \ 
    RGPU=unit1 \ 
    RGSM=$SAMPLE 
 
# samtools view -H yourfile.bam | grep '^@RG' 
# Need to index the file again 
 



module load gcc/13.2.0-iqpfkya samtools/1.19.2-wqjp7os 
 
samtools index $OUT_DIR/${SAMPLE}.rg.rmdup.bam 

 

 

Step 5: SNP variant calling 

Variant calling is the final critical step in the sequencing analysis workflow, where genetic variants 

such as SNPs (single nucleotide polymorphisms) and indels (insertions and deletions) are 

identified by comparing aligned sequencing reads to a reference genome. Several tools are 

available for variant calling, each offering different features, strengths, and compatibility 

depending on the type of data and analysis goals. 

BCFtools is a lightweight and efficient tool that is often used for rapid variant calling and 

filtering directly from BAM files. It is well-suited for small- to medium-sized projects and offers 

straightforward integration into existing command-line workflows. However, while BCFtools is 

fast and easy to use, it lacks some of the more advanced features and quality controls provided by 

other tools. 

VCFtools, on the other hand, is not a variant caller per se but a widely used tool for filtering, 

comparing, and analyzing VCF (Variant Call Format) files. It is typically used downstream of the 

variant calling process, rather than to generate the variants themselves. VCFtools is not updated 

anymore. 

 

The Genome Analysis Toolkit (GATK) is a widely used software suite designed for variant 

discovery and genotyping from high-throughput sequencing data. The GATK Best Practices 

workflow provides a reliable and standardized approach to identify variants such as single 

nucleotide polymorphisms (SNPs) and insertions/deletions (indels) in both individual genomes 

and populations. The initial step in this workflow involves using the HaplotypeCaller tool, which 

processes each sample individually to produce GVCF files. These GVCF files contain detailed 

information on variant sites as well as non-variant regions, enabling a comprehensive summary of 

each genome. The advantage of this approach is that it allows for efficient joint genotyping later 

without the need to rerun variant calling for all samples every time a new sample is added. After 

generating per-sample GVCFs, the next key step is joint genotyping using the GenotypeGVCFs 

tool. This step combines the information from all samples to call genotypes simultaneously, 

improving accuracy by leveraging population-level data and ensuring consistent variant calls 

across the cohort. 

For computational efficiency, especially with large datasets or whole genomes, it is common 

practice to run GenotypeGVCFs separately on each chromosome or genomic region. This 

approach parallelizes the workload, speeding up the analysis. However, this produces 

chromosome-specific VCF files, which need to be merged before further processing. Merging is 

essential to unify the variants across the whole genome for downstream analysis. This is typically 

done using tools such as bcftools, which can concatenate chromosome-specific VCFs into a single 

combined VCF file, taking care to maintain compression and indexing for efficient access. Variant 

filtering is a critical step that follows merging. It helps to distinguish true genetic variants from 

sequencing artifacts or errors. GATK offers two main strategies for filtering variants. The first is 



Variant Quality Score Recalibration (VQSR), a sophisticated machine learning-based method that 

uses known variant resources to build a model distinguishing high-quality from low-quality 

variants. This method is highly effective for large cohorts and model organisms where reliable 

resource datasets exist. The second strategy is hard filtering, which applies fixed thresholds on 

various annotation metrics such as Quality by Depth (QD), Fisher Strand (FS), Mapping Quality 

(MQ), and others. Hard filtering is particularly useful when resource files for VQSR are 

unavailable, such as in non-model organisms or small datasets. It is important to note that filtering 

should always be applied on the combined VCF, rather than on individual chromosome files, to 

avoid inconsistencies and batch effects. Sometimes, researchers use SelectVariants to subset 

variants into categories like SNPs and indels before applying filtering. This can improve filtering 

precision since different variant types may require distinct thresholds. However, this step is 

optional and depends on the goals of the analysis. Compression and indexing are vital technical 

steps that ensure VCF files are accessible and efficiently processed by downstream tools. The 

merged VCF file should be compressed using bgzip and indexed using tabix before filtering or 

further analysis. 

In workflows that leverage parallel processing or job arrays, it is important to recognize that 

while variant calling and joint genotyping can be run in parallel for each chromosome, merging 

and filtering steps generally require the final combined VCF file and thus cannot be parallelized 

in the same way. Attempting to filter variants on per-chromosome VCFs independently can lead to 

errors and inconsistencies. Common issues in this workflow often arise from improper handling 

of file formats or merging steps. For example, if the merged VCF is not properly compressed or 

indexed, GATK may fail to read the file, generating errors related to missing codecs or invalid file 

format. Ensuring that bcftools or other merging tools are used correctly with compression and 

indexing resolves these issues. Another common pitfall is providing lists of files incorrectly, such 

as passing newline-separated filenames as a single argument instead of space-separated entries or 

an array. 

In summary, the recommended workflow begins with per-sample variant calling producing 

GVCFs, followed by joint genotyping of all samples per chromosome. After obtaining 

chromosome-specific VCFs, these are merged into a single, compressed, and indexed VCF file. 

Variant filtration, whether through VQSR or hard filtering, is then performed on this combined 

VCF. Indexing the filtered VCF concludes the core analysis pipeline, preparing it for downstream 

applications such as annotation or association studies. Resource files used by VQSR, such as 

known variant datasets, should be chosen carefully and are usually available for well-studied 

organisms. When these resources are not available, hard filtering remains a valid and effective 

alternative. Thresholds used in hard filtering should be adapted based on the quality of the 

sequencing data and experimental design.  

An optional, but recommended, enhancement to this pipeline is Base Quality Score 

Recalibration (BQSR). This step, partially included in your script as commented code, corrects 

systematic errors made by the sequencer in base quality scores, which directly affect the 

confidence of variant calls. BQSR uses a known set of variants (obtained from hard-filtered, high-

confidence SNPs) as a truth set, recalibrates the base scores accordingly, and improves downstream 

variant calling. However, BQSR is most beneficial when coverage is moderate to high; in low-

coverage studies, it may introduce more noise than it resolves. In your course setting, this step is 



left optional and may be skipped due to practical constraints, like limited read depth or lack of a 

known high-quality variant set.  

Overall, this workflow balances accuracy, efficiency, and flexibility, accommodating different 

project sizes, organism types, and available resources. Proper understanding and implementation 

of each step ensure high-quality variant calls suitable for robust genetic analyses. 

 

Note: Hard Filtering vs VariantFiltration in GATK: When working with variant call data in GATK, 

it’s important to ensure the variants you analyze are of high quality. Two related concepts often 

come up in this context: hard filtering and the VariantFiltration tool. Hard filtering refers to the 

practice of applying fixed, user-defined cutoff thresholds to specific variant annotations. These 

annotations might include metrics such as Quality by Depth (QD), Fisher Strand bias (FS), 

Mapping Quality (MQ), and others. For example, you might decide to exclude variants with QD 

less than 2.0 or FS greater than 60. These cutoffs are predetermined, simple, and non-adaptive 

rules used to filter out variants that are likely false positives based on empirical experience or 

literature. The VariantFiltration tool in GATK is the actual software utility that implements this 

hard filtering strategy. It takes a VCF file as input and applies the user-specified filter expressions, 

tagging variants that fail those thresholds with filter labels in the output VCF. This means 

VariantFiltration is the means to perform hard filtering within the GATK framework. It does not 

modify or remove variants but marks those that don’t pass filters, allowing downstream tools or 

analyses to exclude or handle them differently. It’s important to distinguish this from another 

GATK filtering method called Variant Quality Score Recalibration (VQSR). VQSR is a more 

advanced, machine-learning based filtering approach that models the quality metrics of known, 

trusted variant sites and assigns a probabilistic score to new variants. Unlike hard filtering, VQSR 

adapts its thresholds based on data distributions and is generally considered more accurate but 

requires large datasets and reliable known variant resources. In practice, hard filtering with 

VariantFiltration is often used when VQSR is not feasible—such as in smaller datasets, non-model 

organisms without established variant databases, or as an initial filtering step. The flexibility of 

VariantFiltration allows users to tailor filter thresholds according to their data quality and 

experimental design. In summary, hard filtering is a concept describing filtering variants by fixed 

thresholds, and VariantFiltration is the GATK tool that performs this filtering. When using GATK, 

applying hard filters means configuring and running VariantFiltration with appropriate cutoffs. 

This approach provides a straightforward and effective way to clean variant calls, especially when 

VQSR is not an option. 

 

 

SLURM Batch Script: GatkHaplo_array.sbatch 
#!/bin/bash 
#SBATCH --partition=batch 
#SBATCH --job-name=GATK 
#SBATCH --ntasks=1 
#SBATCH --cpus-per-task=4 
#SBATCH --mem=16G 
#SBATCH --time=01:00:00 
#SBATCH --output=GATK_%A_%a.out 



#SBATCH --error=GATK_%A_%a.err 
#SBATCH --array=0-14%6 
 
module load gcc/14.2.0 gatk/4.5.0.0 
 
cd /mnt/sagonas_a/PopGen_HPC 
 
SAMPLE=$(sed -n "$((SLURM_ARRAY_TASK_ID + 1))p" samples.txt | tr -d '[:space:]') 
REFERENCE=/mnt/sagonas_a/PopGen_HPC/03ReferenceGenome/GCA_964106915.1_rPodGai
1.hap1.1_genomic.fa 
IN_DIR=/mnt/sagonas_a/PopGen_HPC/04AlignedReads/Dedup/Samtools/RG 
OUT_DIR_BASE=/mnt/sagonas_a/PopGen_HPC/05VariantCalling 
OUT_DIRS=("GVCF" "Filtered") 
 
# Create output directories 
for d in "${OUT_DIRS[@]}"; do mkdir -p "${OUT_DIR_BASE}/${d}"; done 
 
# Step 1: Run HaplotypeCaller on each sample in GVCF mode 
 
  gatk HaplotypeCaller \ 
    -R $REFERENCE \ 
    -I $IN_DIR/${SAMPLE}.rg.rmdup.bam \ 
    -O $OUT_DIR_BASE/GVCF/${SAMPLE}.g.vcf.gz \ 
    -ERC GVCF  
 
# In the following steps we can apply BSQR (Base Quality Score Recalibration). BQSR is a machine 
learning-based process in GATK that detects systematic errors made by the sequencer in 
estimating the quality score of each base call. Then adjusts those scores, improving downstream 
variant calling accuracy. In other words, base quality scores directly influence Which bases are 
trusted during variant calling, the confidence of variant calls (especially SNPs and indels), and 
minimize biases that could be lead to false positives (bad variants called as real) and false 
negatives (real variants missed due to underestimated confidence) calls. BSQR can be avoided 
when coverage is very low and recalibration would introduce noise or when we re using tools non 
sensitive to recalibrated scores 
 
# # 2. Apply hard filters to isolate high-confidence SNPs 
# gatk VariantFiltration \ 
#   -R $REFERENCE \ 
#   -V $OUT_DIR_BASE/GVCF/${SAMPLE}.g.vcf.gz \ 
#   -O $OUT_DIR_BASE/GVCF/${SAMPLE}.g.filtered.vcf.gz \ 
#   --filter-expression "QD < 2.0 || FS > 60.0 || MQ < 40.0" \ 
#   --filter-name "FAIL" 
 
# # 3. Then retain only PASS variants: 
# module load gcc/13.2.0-iqpfkya bcftools/1.19-odjvyvt 
# bcftools view -f PASS -v snps $OUT_DIR_BASE/GVCF/${SAMPLE}.g.filtered.vcf.gz -Oz -o 
$OUT_DIR_BASE/GVCF/${SAMPLE}.g.known_sites.vcf.gz 
# tabix -p vcf $OUT_DIR_BASE/GVCF/${SAMPLE}.g.known_sites.vcf.gz 
 



# # 4. Use this VCF as your --known-sites input for BQSR 
# # Applying BQSR to re-call variants with recalibrated BAM, improves quality scores and results 
in better variant calls 
 
# BQSR_DIR=/mnt/sagonas_a/PopGen_HPC/06BQSR 
# 
KNOWN_SITES=/mnt/sagonas_a/PopGen_HPC/05VariantCalling/GVCF/${SAMPLE}.g.known_sit
es.vcf.gz 
 
# # Create output directory 
# mkdir -p $BQSR_DIR 
 
# # Run BaseRecalibrator 
# gatk BaseRecalibrator \ 
#   -R $REFERENCE \ 
#   -I ${IN_DIR}/${SAMPLE}.rmdup.bam \ 
#   --known-sites $KNOWN_SITES \ 
#   -O ${BQSR_DIR}/${SAMPLE}.recal_data.table 
 
# # Apply the recalibration 
# gatk ApplyBQSR \ 
#   -R $REFERENCE \ 
#   -I ${IN_DIR}/${SAMPLE}.rmdup.bam \ 
#   --bqsr-recal-file ${BQSR_DIR}/${SAMPLE}.recal_data.table \ 
#   -O ${BQSR_DIR}/${SAMPLE}.bqsr.bam 
 
# # Analyze covariates 
# gatk AnalyzeCovariates \ 
#   -before ${BQSR_DIR}/${SAMPLE}.recal_data.table \ 
#   -after ${BQSR_DIR}/${SAMPLE}.recal_data.table \ 
#   -plots ${BQSR_DIR}/${SAMPLE}.bqsr_plots.pdf 
 
# In the next step we should re-run HaplotypeCaller 
 
 
SLURM Batch Script: GenomicsDBImport _array.sbatch 
# Step 2: GenomicsDBImport to combine all GVCFs. GenomicsDBImport is used in GATK’s joint 
genotyping process. After calling variants per sample in GVCF mode (via HaplotypeCaller -ERC 
GVCF), you need to combine all sample GVCFs to jointly call genotypes across the cohort. This is 
essential for ensuring consistent variant calls across all samples, improving sensitivity for low-
frequency variants and avoiding per-sample biases 
 
#!/bin/bash 
#SBATCH --partition=batch 
#SBATCH --job-name=GenomicsDB 
#SBATCH --array=0-21%6       # Adjust this to match number of chromosomes 
#SBATCH --cpus-per-task=4 
#SBATCH --mem=32G 
#SBATCH --time=04:00:00 



#SBATCH --output=logs/genomicsdb_%A_%a.out 
#SBATCH --error=logs/genomicsdb_%A_%a.err 
 
module load gcc/14.2.0 gatk/4.5.0.0 
 
cd /mnt/sagonas_a/PopGen_HPC 
 
REFERENCE=/mnt/sagonas_a/PopGen_HPC/03ReferenceGenome/GCA_964106915.1_rPodGai
1.hap1.1_genomic.fa 
GVCF_DIR=/mnt/sagonas_a/PopGen_HPC/05VariantCalling/GVCF 
GENDB_DIR=/mnt/sagonas_a/PopGen_HPC/05VariantCalling/GenomicsDB 
SAMPLES_FILE="samples.txt" 
 
mkdir -p $GENDB_DIR 
 
# First we will create a list of samples that will be imported 
SAMPLES_MAP=/mnt/sagonas_a/PopGen_HPC/05VariantCalling/sample_gvcf_map.txt 
if [ ! -f "$SAMPLES_MAP" ]; then 
  while read -r SAMPLE; do 
    SAMPLE_CLEAN=$(echo "$SAMPLE" | tr -d '[:space:]') 
    echo -e "${SAMPLE_CLEAN}\t${GVCF_DIR}/${SAMPLE_CLEAN}.g.vcf.gz" 
  done < "$SAMPLES_FILE" > "$SAMPLES_MAP" 
fi 
 
# Second we will create a chromosome list from the reference genome 
CHROM_LIST=/mnt/sagonas_a/PopGen_HPC/05VariantCalling/chroms.txt 
if [ ! -f "$CHROM_LIST" ]; then 
  cut -f1 ${REFERENCE}.fai > "$CHROM_LIST" 
fi 
 
# Get chromosome for this array task 
CHR=$(sed -n "$((SLURM_ARRAY_TASK_ID + 1))p" "$CHROM_LIST") 
OUT_DIR=${GENDB_DIR}/${CHR} 
 
# Delete existing workspace if it exists 
if [ -d "$OUT_DIR" ]; then 
  echo "Deleting existing workspace: $OUT_DIR" 
  rm -rf "$OUT_DIR" 
fi 
 
gatk GenomicsDBImport \ 
  --genomicsdb-workspace-path "$OUT_DIR" \ 
  --sample-name-map "$SAMPLES_MAP" \ 
  --reader-threads 4 \ 
  -L "$CHR" 
 
 
SLURM Batch Script: GenotypeGVCFs_array.sbatch 
#!/bin/bash 



#SBATCH --partition=batch 
#SBATCH --job-name=GenotypeGVCFs 
#SBATCH --cpus-per-task=4 
#SBATCH --mem=8G 
#SBATCH --time=04:00:00 
#SBATCH --output=logs/genotypegvcfs_%A_%a.out 
#SBATCH --error=logs/genotypegvcfs_%A_%a.err 
#SBATCH --array=0-21%6  # Update to match number of samples - 1 
 
# Alternatively for full automation, we can remove the last line (--array) entirely and submit the 
bach like this 
# N=$(wc -l < /mnt/sagonas_a/PopGen_HPC/05VariantCalling/chroms.txt) 
# sbatch --array=0-$(($N - 1)) GenotypeGVCFs_array.sbatch 
 
module load gcc/14.2.0 gatk/4.5.0.0 
 
cd /mnt/sagonas_a/PopGen_HPC 
 
REFERENCE=/mnt/sagonas_a/PopGen_HPC/03ReferenceGenome/GCA_964106915.1_rPodGai
1.hap1.1_genomic.fa 
GENDB_DIR=/mnt/sagonas_a/PopGen_HPC/05VariantCalling/GenomicsDB 
OUT_DIR=/mnt/sagonas_a/PopGen_HPC/05VariantCalling/JointGenotyped 
CHROM_LIST=/mnt/sagonas_a/PopGen_HPC/05VariantCalling/chroms.txt 
 
mkdir -p "$OUT_DIR" 
 
# Get chromosome for this array task 
CHR=$(sed -n "$((SLURM_ARRAY_TASK_ID + 1))p" "$CHROM_LIST") 
 
gatk GenotypeGVCFs \ 
  -R "$REFERENCE" \ 
  -V gendb://$GENDB_DIR/$CHR \ 
  -O $OUT_DIR/${CHR}.vcf.gz 
 
# Explore the vcf files 
# module load gcc/13.2.0-iqpfkya bcftools/1.19-odjvyvt 
# bcftools view -h <${CHR}.vcf.gz> #header 
# bcftools view --no-header <${CHR}.vcf.gz> | less -S 
 
 
SLURM Batch Script: Hardfiltering_array.sbatch 
#!/bin/bash 
#SBATCH --partition=batch 
#SBATCH --job-name=HardFilter 
#SBATCH --cpus-per-task=2 
#SBATCH --mem=8G 
#SBATCH --time=02:00:00 
#SBATCH --output=logs/hardfilter_%A_%a.out 
#SBATCH --error=logs/hardfilter_%A_%a.err 



#SBATCH --array=0-21%6 
 
module load gcc/14.2.0 gatk/4.5.0.0 
 
cd /mnt/sagonas_a/PopGen_HPC 
 
REFERENCE=/mnt/sagonas_a/PopGen_HPC/03ReferenceGenome/GCA_964106915.1_rPodGai
1.hap1.1_genomic.fa 
VCF_DIR=/mnt/sagonas_a/PopGen_HPC/05VariantCalling/JointGenotyped 
OUT_DIR=/mnt/sagonas_a/PopGen_HPC/05VariantCalling/HardFiltered 
CHROM_LIST=/mnt/sagonas_a/PopGen_HPC/05VariantCalling/chroms.txt 
 
mkdir -p "$OUT_DIR" 
 
# Get chromosome name for this task 
CHR=$(sed -n "$((SLURM_ARRAY_TASK_ID + 1))p" "$CHROM_LIST") 
 
INPUT_VCF=${VCF_DIR}/${CHR}.vcf.gz 
SNPS_VCF=${OUT_DIR}/${CHR}_snps.vcf.gz 
INDELS_VCF=${OUT_DIR}/${CHR}_indels.vcf.gz 
 
# 1. Select SNPs 
gatk SelectVariants \ 
  -R "$REFERENCE" \ 
  -V "$INPUT_VCF" \ 
  --select-type-to-include SNP \ 
  -O "$SNPS_VCF" 
 
# 2. Filter SNPs 
gatk VariantFiltration \ 
  -R "$REFERENCE" \ 
  -V "$SNPS_VCF" \ 
  -O "${OUT_DIR}/${CHR}_snps_filtered.vcf.gz" \ 
  --filter-name "QD_lt2" --filter-expression "QD < 2.0" \ 
  --filter-name "FS_gt60" --filter-expression "FS > 60.0" \ 
  --filter-name "MQ_lt40" --filter-expression "MQ < 40.0" \ 
  --filter-name "MQRankSum_lt-12.5" --filter-expression "MQRankSum < -12.5" \ 
  --filter-name "ReadPosRankSum_lt-8" --filter-expression "ReadPosRankSum < -8.0" 
 
# 3. Select INDELs 
gatk SelectVariants \ 
  -R "$REFERENCE" \ 
  -V "$INPUT_VCF" \ 
  --select-type-to-include INDEL \ 
  -O "$INDELS_VCF" 
 
# 4. Filter INDELs 
gatk VariantFiltration \ 
  -R "$REFERENCE" \ 



  -V "$INDELS_VCF" \ 
  -O "${OUT_DIR}/${CHR}_indels_filtered.vcf.gz" \ 
  --filter-name "QD_lt2" --filter-expression "QD < 2.0" \ 
  --filter-name "FS_gt200" --filter-expression "FS > 200.0" \ 
  --filter-name "ReadPosRankSum_lt-20" --filter-expression "ReadPosRankSum < -20.0" 
 
 
SLURM Batch Script: MergingVCFs_array.sbatch 
#!/bin/bash 
#SBATCH --partition=batch 
#SBATCH --job-name=VariantFiltration 
#SBATCH --cpus-per-task=2 
#SBATCH --mem=8G 
#SBATCH --time=02:00:00 
#SBATCH --output=logs/variantfiltration_%j.out 
#SBATCH --error=logs/variantfiltration_%j.err 
#SBATCH --array=0-21%6 
 
# Before running VariantFiltration we need to merge the per-chromosome VCFs 
module load gcc/13.2.0-iqpfkya bcftools/1.19-odjvyvt 
 
OUT_DIR=/mnt/sagonas_a/PopGen_HPC/05VariantCalling/JointGenotyped 
MERGED_VCF=$OUT_DIR/combined.vcf.gz 
 
# List all chromosome VCFs 
VCF_LIST=$(ls /mnt/sagonas_a/PopGen_HPC/05VariantCalling/JointGenotyped/*.vcf.gz | tr '\n' ' ') 
 
# Merge all chromosome VCFs (concatenate since chromosomes don't overlap) 
bcftools concat -a -O z -o $MERGED_VCF $VCF_LIST 
 
# Index the merged VCF as a tbi file 
bcftools index --tbi $MERGED_VCF 
 
 
SLURM Batch Script: VariantFiltration.sbatch 
#!/bin/bash 
#SBATCH --partition=batch 
#SBATCH --job-name=VariantFiltration 
#SBATCH --mem=8G 
#SBATCH --time=02:00:00 
#SBATCH --output=variantfiltration.out 
#SBATCH --error=variantfiltration.err 
 
# In this step we will filter the SNPs. We will use VariantFiltration to flag low quality SNPs 
 
module load gcc/14.2.0 gatk/4.5.0.0 
 
REFERENCE=/mnt/sagonas_a/PopGen_HPC/03ReferenceGenome/GCA_964106915.1_rPodGai
1.hap1.1_genomic.fa 



INPUT_VCF=/mnt/sagonas_a/PopGen_HPC/05VariantCalling/JointGenotyped/combined.vcf.gz 
OUTPUT_VCF=/mnt/sagonas_a/PopGen_HPC/05VariantCalling/Filtered/combined.filtered.vcf.g
z 
FILTERED_PASS_VCF=/mnt/sagonas_a/PopGen_HPC/05VariantCalling/Filtered/combined.filter
ed.vcf.gz 
 
 
mkdir -p $(dirname "$OUTPUT_VCF") 
 
gatk VariantFiltration \ 
  -R "$REFERENCE" \ 
  -V "$INPUT_VCF" \ 
  --filter-name "QD_filter" --filter-expression "QD < 2.0" \ 
  --filter-name "FS_filter" --filter-expression "FS > 60.0" \ 
  --filter-name "MQ_filter" --filter-expression "MQ < 40.0" \ 
  --filter-name "MQRankSum_filter" --filter-expression "MQRankSum < -12.5" \ 
  --filter-name "ReadPosRankSum_filter" --filter-expression "ReadPosRankSum < -8.0" \ 
  --filter-name "SOR_filter" --filter-expression "SOR > 3.0" \ 
  -O "$OUTPUT_VCF" 
 
# After running VariantFiltration in GATK, your VCF file will have variants flagged with filter 
annotations based on the criteria you set. The next step is to filter the variants based on those 
flags 
 
module load gcc/13.2.0-iqpfkya bcftools/1.19-odjvyvt 
 
bcftools view -f PASS $OUTPUT_VCF -Oz -o $FILTERED_PASS_VCF 
bcftools index $FILTERED_PASS_VCF 
 
#To extract SNPs 
bcftools view -v snps $FILTERED_PASS_VCF -Oz -o combined.filtered_pass_snps.vcf.gz 
 
#To extract indels 
bcftools view -v indels $FILTERED_PASS_VCF -Oz -o combined.filtered_pass_indels.vcf.gz 
 

 

 


