

CENTER FOR

BIOLOGICAL

COMPUTATION

initiative

Lawrence Berkeley **National Laboratory**

Christos A. Ouzounis <u>cao@csd.auth.gr</u> 19 jun 2025

Bespoke comparative genomics software architectures a case-study for future HPC on Aristotelis

HPC for Bioinformatics cgg_toolkit Hands-On Demo

need a short intro to concepts? and some elements of HPC

https://journals.plos.org/ploscompbiol/article?id = 10.1371/journal.pcbi.1011498

CGG Computational Genomics Group | Services

Services Projects Publications Documentation Sponsors People Collaborators

Key software

MagicMatch An efficient method to map sequence identifiers across databases PubMed:15961438

BioLayout

An automatic graph layout algorithm for similarity visualization PubMed:16000016

geneCAST

An algorithm for the complexity analysis of sequence tracts - filters and masks database query sequences PubMed:11120681

geneRAGE

An algorithm for sequence clustering and automated domain detection PubMed:10871267 TribeMCL

An efficient algorithm for large-scale detection of protein families PubMed:11917018

Key services 1: Complete Genome Sequences

CoGenT++ The CoGenT++ sitemap, clickable extended services PubMed:16216832 CoGenT The COmplete GENome Tracking database PubMed:12874064 GenMed Continuous tracking of genomes in CoGenT by PubMed abstracts PubMed:15864286 iCAST Interactive detection and masking of low-complexity regions PubMed:16216832 BlastServer

A BLAST service against CoGenT PubMed:16216832

Key services 2: Genome Comparison using CoGenT

Search CGG WWW

Contact us

life is complex matter an information universe

- biosciences: PBytes of information with large-scale installations
- analysis of these data => topfive players of Big Data
- along with financial, military, comms and physics/astronomy
- noisy, multi-scale: ideal playground for complex systems

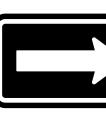
central dogma from DNA to protein

- DNA contains 'genes'
- .. that encode
- .. (via an intermediate, mRNA)
- .. proteins
- both have distinct alphabets
 - DNA: 4 characters {ACGJ}
 - proteins: 20 characters {aa' s}

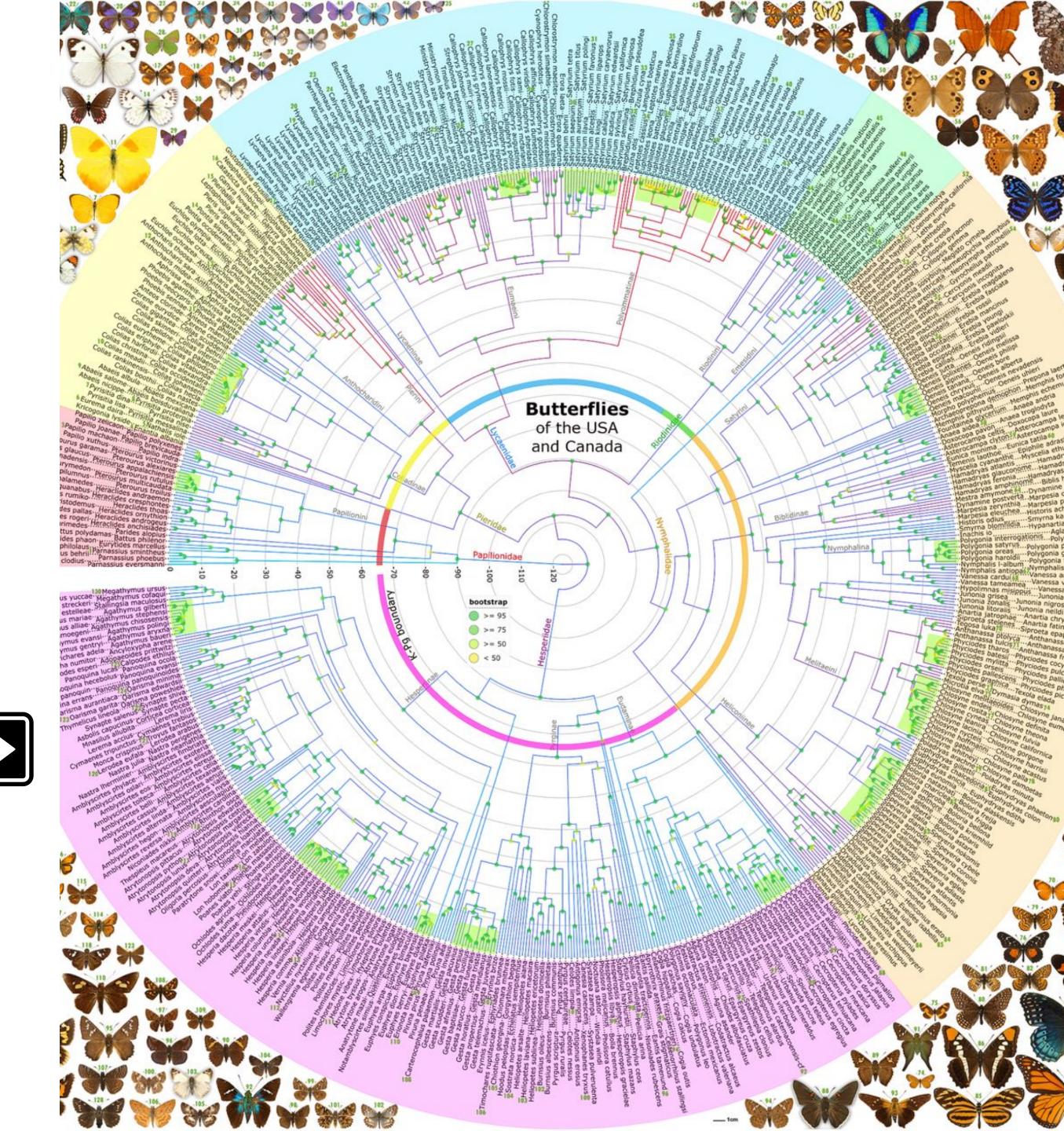
ATGCCCGTTGCCCACGTTGCCCTTGCCCGTTCCGCTTCCTCGTACCTTTGACTATCTGCTGCCAGAAGGCATGACGGTTAAAGCTGGGTGTCGCGTGCGCGG GCCGTTTGGCAAACAGCAGGAGCGCATCGGGATTGTGGTATCAGTTAGCGATGCCAGCGAACTGCCGCTCAATGAGCTAAAAGCGGTAGTCGAAGTGCTGG ATAGTGAGCCGGTGTTTACTCACTCCGTCTGGCGATTGCTGCTATGGGCGGCAGATTACTATCATCCGATTGGCGATGTGCTGTTTCATGCCTTGCCG ATTTTACTACGCCAGGGGGGGGGGCGGCGGACGCGGACGCGGCGGATGTGGTACTGGTTTGCCACTGAACAGGCCAGGCGGTGGATCTGAACAGCCTGAAACGCTC CCCCAAGCAACAACAGGCGCTGGCGGCGTTACGGCAAGGCAAAATCTGGCGCGACCAGGTCGCCACGCTCGAATTTAATGATGCCGCGTTGCAGGCGCTAC CGTACTGGAAAACGTGCTCGCTCAGGGCAAACAGGCGCTGGTGATGGTGCCGGAAATCGGCCTGACACCGCAAACTATCGCCCGTTTTCGTGAACGTTTTA ATGCCCCCGTGGAAGTTCTGCATTCCGGCCTGAACGACGACGGCGGCGTCTTTCGGCGTGGCTGAAAGCGAAAAATGGTGAGGCGGCGGCGATTGTGATCGGCACC CGCTCCGCGCTGTTTACGCCGTTTAAAAAATCTCGGCGTGATTGTCATTGATGAAGAGCACGACAGCTCCTACAAGCAGCAGGAAGGCTGGCGCTATCATGC CCGCGACCTGGCGGTGTATCGTGCGCGCACAGCGAGCAAATCCCCGATTATTCTTGGCTCCGCAACGCCCGCGCTGGAAACGTTATGCAACGTCCAGCAGAAAA CCGGCGTTAATCACTCGTATGCGCCAGCATTTACAGGCTGATAACCAGGTCATTCTTTTTTTAACCGCCGTGGCTTTGCGCCTGCACTGCTGTGCCACGA CTGTGGCTGGATTGCCGAATGCCCACGTTGCGATCACTACTACACGCTGCATCAGGCGCAGCACCATCTGCGCTGCCACCACTGTGACAGTCAGCGTCCGG TGCCGCGCCAGTGCCCTTCCTGCGGTTCCACGCACCTGGTCCCCGTGGGGCTGGGCACCGAACAGCTTGAACAGACGCTCGCGCCGTTGTTCCCCCGGCGTG CCCATTTCTCGTATCGACCGCGATACCACCAGCCGCAAAGGGGGCGCTGGAACAGCAACTGGCAGAAGTACATCGCGGCGGCGCGCGGGATTTTGATTGGTAC GTTTCGCTCAGCTTTACACCCAGGTCGCCGGTCGTGCCGGGCGTGCGGGGTAAACAGGGCGAAGTGGTGCTGCAAACGCACCATCCGGAACATCCTCTGTTG TGCGGAAGATCATAACAATCAGCACGCGCCATTGTTCCTGCAACAACTGCGTAATCTGATCCTCTCCAGCCCACTGGCAGACGAGAAACTGTGGGTTCTCG GTCCGGTTCCGGCTCTGGCACCTAAACGTGGCGGTCGCTGGCGCTGGCAGATATTGTTGCAGCACCCTTCCCGCGTGCGCTTGCAACACATCATTAACGGT ACGCTGGCGCTCATCAATACCAATACCGGATTCCCCGTAAGGTGAAATGGGTGCTGGATGTTGATCCGATTGAGGGTTAA

> MPVAHVALPVPLPRTFDYLLPEGMTVKAGCRVRVPFGKQQERIG IVVSVSDASELPLNELKAVVEVLDSEPVFTHSVWRLLLWAADYY HHPIGDVLFHALPILLRQGRPAANAPMWYWFATEQGQAVDLNSL KRSPKQQQALAALRQGKIWRDQVATLEFNDAALQALRKKGLCDL ASETPEFSDWRTNYAVSGERLRLNTEQATAVGAIHSAADTFSAW LLAGVTGSGKTEVYLSVLENVLAQGKQALVMVPEIGLTPQTIAR FRERFNAPVEVLHSGLNDSERLSAWLKAKNGEAAIVIGTRSALF TPFKNLGVIVIDEEHDSSYKQQEGWRYHARDLAVYRAHSEQIPI ILGSATPALETLCNVQQKKYRLLRLTRRAGNARPAIQHVLDLKG QKVQAGLAPALITRMRQHLQADNQVILFLNRRGFAPALLCHDCG WIAECPRCDHYYTLHQAQHHLRCHHCDSQRPVPRQCPSCGSTHL VPVGLGTEQLEQTLAPLFPGVPISRIDRDTTSRKGALEQQLAEV HRGGARILIGTQMLAKGHHFPDVTLVALLDVDGALFSADFRSAE RFAQLYTQVAGRAGRAGKQGEVVLQTHHPEHPLLQTLLYKGYDA FAEQALAERRMMQLPPWTSHVIVRAEDHNNQHAPLFLQQLRNLI LSSPLADEKLWVLGPVPALAPKRGGRWRWQILLQHPSRVRLQHI INGTLALINTIPDSRKVKWVLDVDPIEG

DNA changes at very slow rates for Myrs = > EVOLUJ90N


>gi|82583714|emb|CT009680.1| Human chromosome X complete sequence CTAACCCTAACCCTAACCCTAACCCTAACCCTCTGAAAGTGGACCTATCAGCAGGATGTGGGTG GGAGCAGATTAGAGAATAAAAGCAGACTGCCTGAGCCAGCAGTGGCAACCCAATGGGGTCCCTTTCCATA CTGTGGAAGCTTCGTTCTTTCACTCTTTGCAATAAATCTTGCTATTGCTCACTCTTTGGGTCCACACTGC CTTTATGAGCTGTGACACTCACCGCAAAGGTCTGCAGCTTCACTCCTGAGCCAGTGAGACCACAACCCCA ACTGTAACACTCACCGCGAGGTTCCGCGTCTTCATTCTTGAAGTCAGTGAGACCCAAGAACCCACCAATTC CAGACACACTAGGACCCTGAGACAACCCCTAGAAGAGCACCTGGTTGATAACCCAGTTCCCATCTGGGAT TTAGGGGACCTGGACAGCCCGGAAAATGAGCTCCTCATCTCTAACCCAGTTCCCCTGTGGGGATT GACCAGGGACAGCCCGTTGCATGAGCCCCTGGACTCTAACCCAGTTCCCCTTCTGGAATTTAGGGG GGACAGCCCTGTACATGAGCTCCTGGTCTGTAACACAGTTCCCCTGTGGGGGATTTAGGGACT CTGTCTTTGGGATCTACTCTCTATGGGCCACACAGATATGTCTTCCAACTTCCCTACACAGGGGGGGACTT AGGTACTGATGCAAACACTTTGTACGAAAAGGTCTTTCTCATCTCGGGGAGTCCCCGTCTATTTGTCCCGG GCCCCAGCTCTGCCTGCAACCCACCCATCCCTGGGACTCGGGCCTCCCCTCTCTAGTGGTCTGGTCATCA TACCACCACCATGGAAACCCCCAGGGTGGGACTCTAGTTTCAGGTTGGAGCTGAGCCCTGTCGGGAATGAG CTTTCCCCAGCTATGGCTTCTTGGGGGCCCCTGTGCCCTGAGCTGTGTCTCCCCAGCATCGGGTCCC TGCATATGGCCCACTCAGGCACAGTGCCGCGATGGCTGCATGCGTGAGGGGGGCCCTGGGCCCAGGGCTGG GAGTCCTTTGTGTCTCATGGCCATGATTGTCCTTCCGAGTATGATATGGTGGCCAATTTCTTTTATTCTG TCGTTCAGAGTGAGTAAATGATGTAGAGTTCATGCAGAAAAAATACAACAAAAACCAAGGGAACATAGA GCCAAAAGTGCCTCTTAAGTCTCCTTTAAAAAGTAGCAAAATTCATCCCTGAAGAAGCATCTTGGCCTTT TTCATGTACTCAGAGTGCTGGTGAAGAACAAAGATTGCTGAAACATTATGTACCTAACAGCGTTAC TGTAGATAACACACTGGAAAAACCTGGTCGTTACAGTGGACATATTCCAGGAAGTCCTTGCCTGAGGTTTT CCAAGTTATGGAATTGCTTGAGATTGGAAGAGGCGATGGAGGGTACAACTGTAATGCCCCAACCT TGCTAACCCTGTTTTTAGACTCTCCCTTTCCTTCAATCACCTAGCCTTCTTTCCACCTGAAAGGA CCTTAACTGAGAGAACCGGACAGACTCCATCTTGGCTCTTTCACTGGCAGCCCCTTCCTCAAAGACTTAA CTCGTGCAAGCTGACTCCCAGGACATCCGAGAATGCAATTAACTGACAACCTACTGTGGCGAGCTACATC CGCAGTCCCCAGGAATTCGTCCGATTGATAACGCCCCAATTACCCGCGTCTATCACCTTGTAATAGTCTTA AAGCACCTGCACCTGGAACTGTTTACTTTCCTGTAACCATTTATCCTTTTAACATTTTGCCTGATTTACT TATGTAAAAATTCTTTTAACTAGACCGCCACTCCCCTTTCTAAACAAAAGTATAAAAAGAAAATCTAGCCCC TTCTTTGGGACTGAGACAATTTTGAGGTTAACGCAGGGTGCCTGTAATCCTAAGGGAGGAGACCGCCACT TCTGCTGCCCTTCCCCTTCCCCACACCCCCTTCTCTAGTTTATGAAACAGGGAAAAAGGGAGAAAAGCAAAA AGATAAAAAAAAAAAGAAGTAAGATAAAATAGCTAGACGACCTTGGCAGCACCCCCGGCACTGGTGGTTAA AATAATAATAATAATAATATTAACCCCTGACCTAAACTACTTGTGTTATCTGTAAATTCCAGACACTGTA TGAGGAAGCCCTGCAAAACTTTCTGTTCTGTTATCTGATGCGTGTAGCCCCCAGTCACGTTCCGATGCTT GCTCGATCTATCACGACCCTTTCAAGTGAACCCCTTAGAGTCGTAAACCCCTTAAAAGGGCCCAGGAA GTTTTCGGGGGAGCTCGGCTCTTCAGGCCCAAGTAAACCTGCCGTATCTCACCTGAGACCAACCCCCAACT ACAAAACTCAACCTGGAATTTTCCCCAGGACCAAACCCATCTATATTCTGTAACCCCGAAACCTCAAAGCCT AACCCTAACCCCTACCCCTACAGTTGAGGTCCCCCCGCCCCTGTGGTTCCAGCTCAAGACAACCTGCCCC

species share many common characteristics = \geq ± 000209



HPC dozens, 100s, 1000s of cores

- Runs complex, parallel workloads
 - used for physics, climate, genomics
- HPC in the biosciences
 - primarily for genome science, also ecosystems

- many comparisons, combinatorial explosion
- time-critical (e.g. COV9D-19)

today on HYPAIIA @elixir-greece

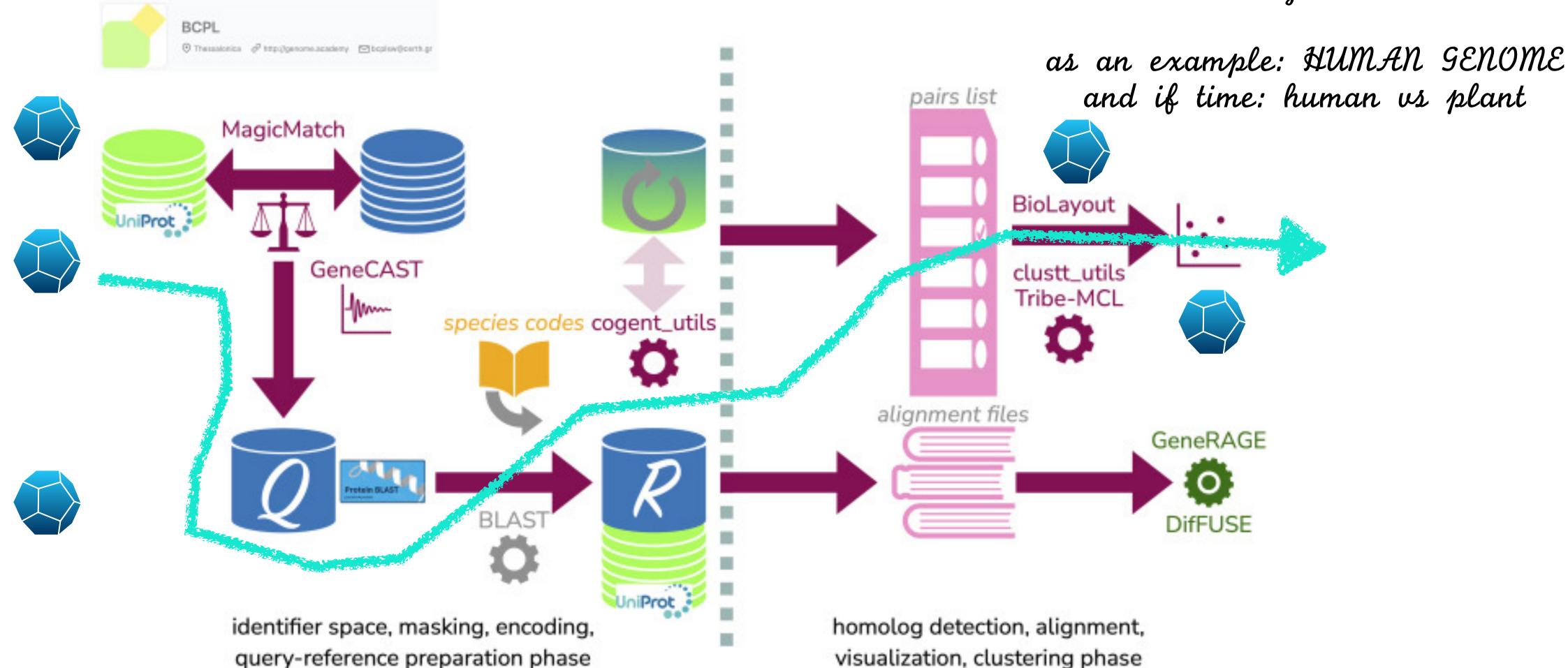
• CPU pool VM

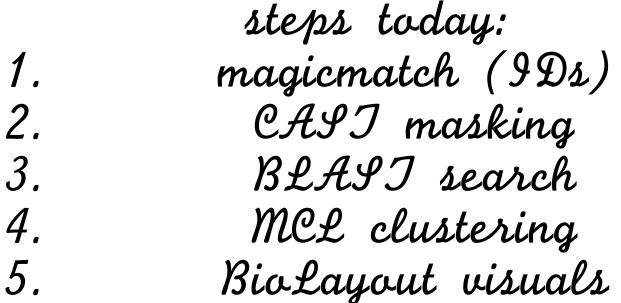
- 96 CPUs
- 1JB RAM
- 2.4 Shz
- Intel Xeon Cascadelake
 - >50 JB space
 - shared resource
 - project-based access etc.

Architecture:	x86_64
CPU op-mode(s):	32-bit, 64-bit
Byte Order:	Little Endian
Address sizes:	40 bits physical, 48 bits virt
CPU(s):	96
On-line CPU(s) list:	0-95
Thread(s) per core:	1
Core(s) per socket:	1
Socket(s):	96
NUMA node(s):	1
Vendor ID:	GenuineIntel
CPU family:	6
Model:	85
Model name:	Intel Xeon Processor (Cascadel
Stepping:	6
CPU MHz:	2400.004
BogoMIPS:	4800.00
Hypervisor vendor:	KVM
Virtualization type:	full
L1d cache:	3 MiB
L1i cache:	3 MiB
L2 cache:	384 MiB
L3 cache:	1.5 GiB
NUMA node0 CPU(s):	0-95

lake)

cgg toolkit collection of tools, implicit

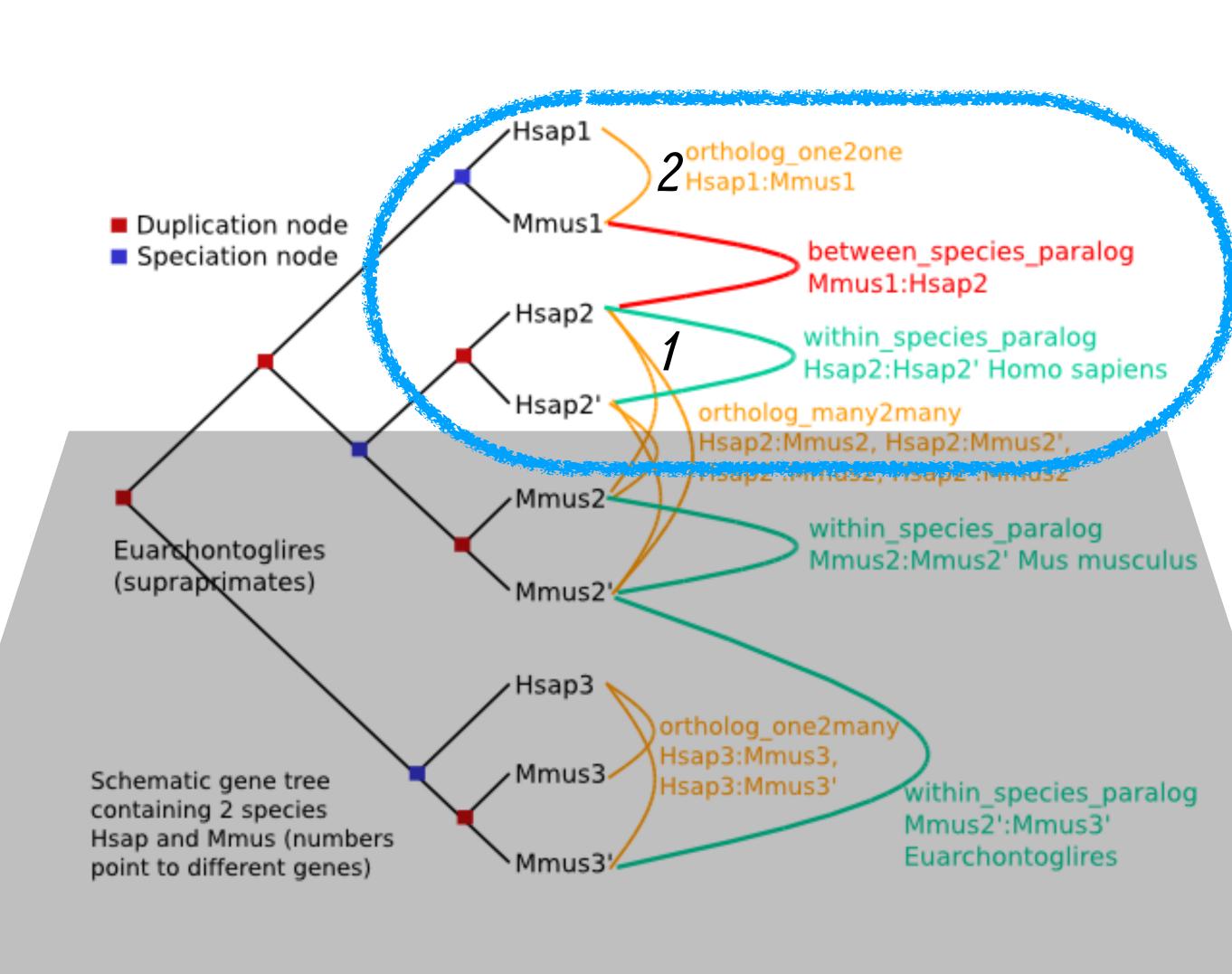

- Runs on HPC CPU pool
 - LURM
 - parallel: MP9, multithreading
- A comparative genomics suite
 - input: genomes, annotations, metadata, data fusion
 - processing: mapping, masking, matching, clustering, visualization
 - output: matrices, clusters, etc.

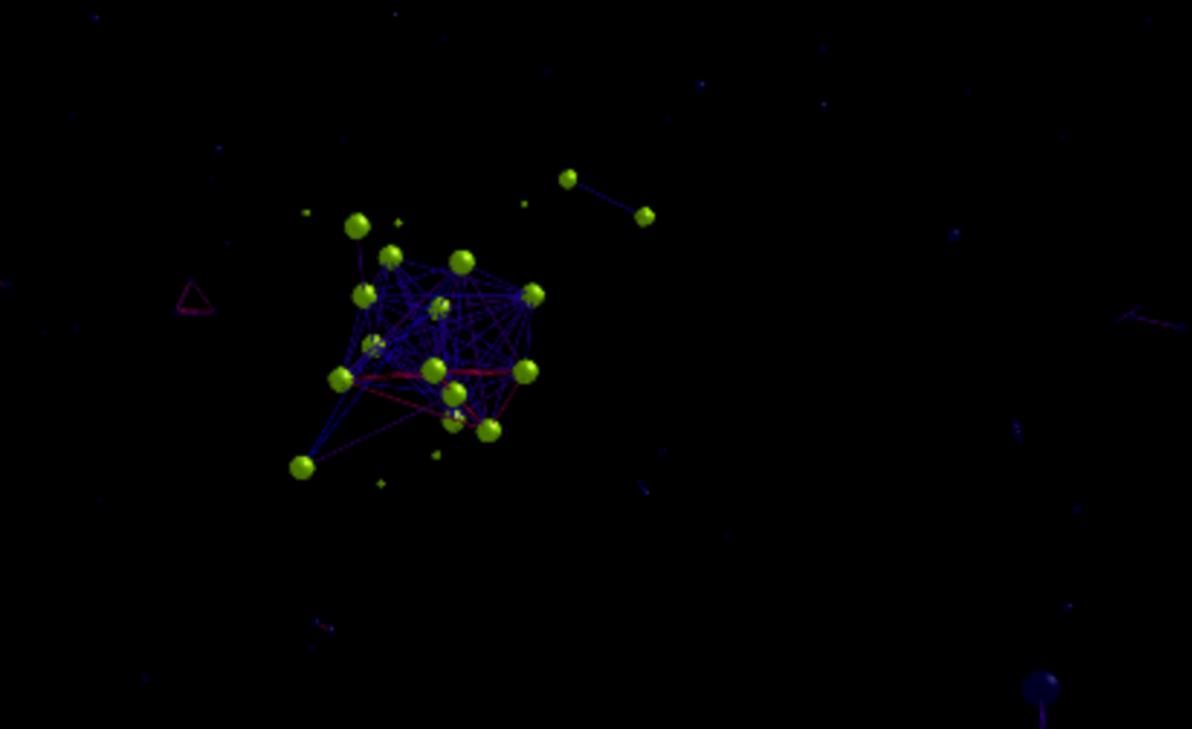


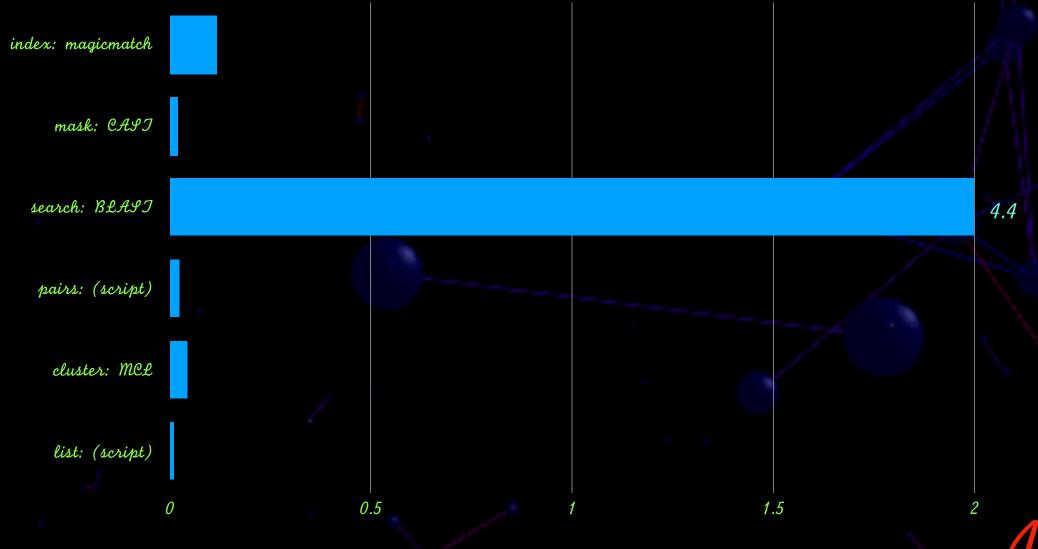
https://github.com/bcpl-certh/cgg-toolkit

cgg toolkit multiple decision points for analysis

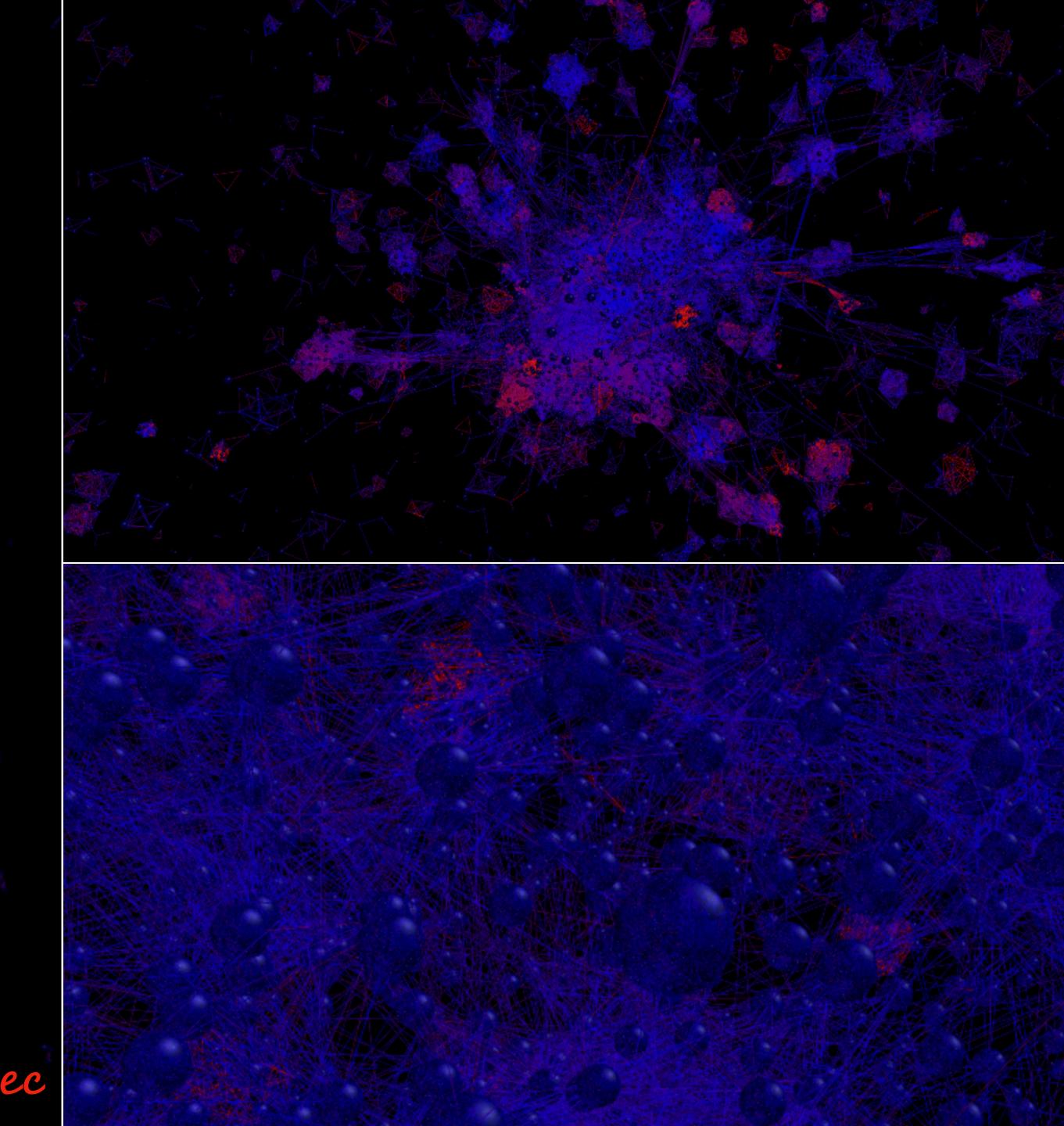
query-reference preparation phase


https://journals.plos.org/ploscompbiol/article?id = 10.1371/journal.pcbi.1011498




live demo step-by-step

- typically automated
 - will explain config
 - will submit jobs one-by-one
- will view results
 - explain
 - discuss
 - and, if time, visualize



if we get here: success!

4.5 sec

conclusion(s) and a couple of recommendations

• HPC is essential

- for bioinformatics, much more
- reproducibility & scalability
 - all genomes: 1bn sec = 30 yrs
- resources
 - get as much storage as you possibly can !!
 - CPU power OK, not crucial
 - prepare for REALLY big data !!

http://genome.academy/how/links