
Performance Optimizations
in CUDA
IOANNIS E . VENETIS
Ass i stant Professor
Department of Informat ics
Univers i ty of P i raeus , Greece

Achieving high performance on GPUs
Modern GPUs have the potential of achieving high performance

◦ ≈33.5 TFLOPS for Double Precision arithmetic (H100 and H200 GPUs)
◦ ≈90.5 TFLOPS for Single Precision arithmetic (L40 GPU)
◦ ≈989.4 TFLOPS for Half Precision arithmetic (H100 GPU)

Programming in a GPU hardware-agnostic manner will not unleash the full potential of GPUs

Programming for high performance on a GPU is not an easy task
◦ Good knowledge of the GPU hardware is required
◦ Good knowledge of possible performance bottlenecks is required
◦ Good knowledge of how to map programming constructs to the GPU hardware to avoid bottlenecks is

required

EuroCC@Greece 2

Purpose of this presentation
Present the common bottlenecks in achieving high performance on GPUs

Present strategies to overcome these bottlenecks

Provide a starting point on where to look at, in case direct programming in CUDA and achieving
high performance on the GPU is required

◦ Achieving high performance on the GPU does not always require direct programming in CUDA
◦ Highly optimized libraries are available that provide commonly required operations in a range of

scientific domains
◦ cuBLAS, cuSPARSE, CUDA Graphs, cuSOLVER, cuFFT, cuRAND, AmgX, …

EuroCC@Greece 3

Simple Matrix Multiplication

EuroCC@Greece 4

Simple Matrix Multiplication
We will use this algorithm to exploit usage of shared memory

◦ One of the strategies to improve performance in programs that execute on the GPU

EuroCC@Greece 5

Preliminaries
A common strategy when programming for the GPU is to assign calculations for each element of
the result to a single CUDA thread

Matrix multiplication
◦ Each thread performs calculations for one element of the output matrix

How to assign elements of the output matrix to threads?

EuroCC@Greece 6

Correlating threads to matrix elements
We use blocks of size 4×4

Matrix is 6×9

4,0
5,0

0,6

2,6

4,6

0,0
1,0
2,0
3,0

4,1
5,1

0,7

2,7

4,7

0,1
1,1
2,1
3,1

4,2
5,2

0,8

2,8

4,8

0,2
1,2
2,2
3,2

4,3
5,3

1,6

3,6

5,6

0,3
1,3
2,3
3,3

4,4
5,4

1,7

3,7

5,7

0,4
1,4
2,4
3,4

4,5
5,5

1,8

3,8

5,8

0,5
1,5
2,5
3,5

0,0

0,1

1,0

1,1

Grid

0,2

0,3

1,2

1,3

2,0

2,1

3,0

3,1

2,2

2,3

3,2

3,3

Matrix

(0,0) (1,0) (2,0)

(0,1) (1,1) (1,2)

x = blockIdx.x * blockDim.x + threadIdx.x;

y = blockIdx.y * blockDim.y + threadIdx.y

0,0

0,1

1,0

1,1

0,2

0,3

1,2

1,3

2,0

2,1

3,0

3,1

2,2

2,3

3,2

3,3

0,0

0,1

1,0

1,1

0,2

0,3

1,2

1,3

2,0

2,1

3,0

3,1

2,2

2,3

3,2

3,3

0,0

0,1

1,0

1,1

0,2

0,3

1,2

1,3

2,0

2,1

3,0

3,1

2,2

2,3

3,2

3,3

0,0

0,1

1,0

1,1

0,2

0,3

1,2

1,3

2,0

2,1

3,0

3,1

2,2

2,3

3,2

3,3

0,0

0,1

1,0

1,1

0,2

0,3

1,2

1,3

2,0

2,1

3,0

3,1

2,2

2,3

3,2

3,3

EuroCC@Greece 7

Threads exceeding matrix limits
We use blocks of size 4×4

Matrix is 6×9

Grid
(0,0) (1,0) (2,0)

(0,1) (1,1) (1,2)

y =blockIdx.y * blockDim.y +
threadIdx.y = 1 * 4 + 2 = 6

0,0

0,1

1,0

1,1

0,2

0,3

1,2

1,3

2,0

2,1

3,0

3,1

2,2

2,3

3,2

3,3

0,0

0,1

1,0

1,1

0,2

0,3

1,2

1,3

2,0

2,1

3,0

3,1

2,2

2,3

3,2

3,3

0,0

0,1

1,0

1,1

0,2

0,3

1,2

1,3

2,0

2,1

3,0

3,1

2,2

2,3

3,2

3,3

0,0

0,1

1,0

1,1

0,2

0,3

1,2

1,3

2,0

2,1

3,0

3,1

2,2

2,3

3,2

3,3

0,0

0,1

1,0

1,1

0,2

0,3

1,2

1,3

2,0

2,1

3,0

3,1

2,2

2,3

3,2

3,3

0,0

0,1

1,0

1,1

0,2

0,3

1,2

1,3

2,0

2,1

3,0

3,1

2,2

2,3

3,2

3,3

x =blockIdx.x * blockDim.x +
threadIdx.x = 2 * 4 + 1 = 9

EuroCC@Greece
8

Row-major representation of matrices in C/C++
2-D matrices are stored in memory row-after-row

◦ Position in this 1-D representation:
◦ Row * Width + Column

0,2

1,1

0,10,0

1,0

0,3

1,2 1,3

2,12,0 2,2 2,3

3,13,0 3,2 3,3

0,4 0,5

1,4 1,5

2,4 2,5

3,4 3,5

0,2 1,10,10,0 1,00,3 1,2 1,3 2,12,0 2,2 2,3 3,13,0 3,2 3,30,4 0,5 1,4 1,5 2,4 2,5 3,4 3,5

2 710 63 8 9 1312 14 15 1918 20 214 5 10 11 16 17 22 23

Width

He
ig

ht

EuroCC@Greece 9

Multiplication of square matrices
Assume the multiplication of square matrices: P = M * N

◦ Matrices assumed square for simplicity in the example
◦ Size of matrices is WIDTH x WIDTH
◦ Our strategy will be for each CUDA thread to calculate one element of P
◦ Notice that each row of M is loaded WIDTH times from global memory
◦ Notice that each column of N is loaded WIDTH times from global memory

M

N

P

W
ID

TH
W

ID
TH

WIDTH WIDTH

EuroCC@Greece 10

M

2-D matrix multiplication
CPU code
// Matrix multiplication on the host in single precision
void MatrixMulOnHost(float *M, float *N, float *P, int Width)
{
for (int i = 0; i < Width; i++) {

for (int j = 0; j < Width; j++) {
double Pvalue = 0.0;
for (int k = 0; k < Width; k++) {
double a = M[i * Width + k];
double b = N[k * Width + j];
Pvalue += a * b;

}
P[i * Width + j] = Pvalue;

}
}

}

EuroCC@Greece 11

Representation of 2-D
matrix in 1-D

N

P

W
ID

TH
W

ID
TH

WIDTH WIDTH

How to organize calculations
We will create blocks of threads of size TILE_WIDTH × TILE_WIDTH

Each block will calculate a tile of size TILE_WIDTH × TILE_WIDTH of the result matrix P

The 2-D grid must have size (WIDTH/TILE_WIDTH) × (WIDTH/TILE_WIDTH)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P2,3 P3,3P3,1

Block(0,0) Block(1,0)

Block(1,1)Block(0,1)

WIDTH = 4; TILE_WIDTH = 2;
Each block has 2 * 2 = 4 threads

WIDTH / TILE_WIDTH = 2;
We will use 2 * 2 = 4 blocks

EuroCC@Greece 12

A larger example

EuroCC@Greece 13

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

P0,5P0,4

P1,4

P0,6 P0,7

P1,5

P2,4 P2,6 P2,7P2,5

P1,7P1,6

P3,4 P3,6 P3,7P3,5

P4,1P4,0

P5,0

P4,2 P4,3

P5,1

P6,0 P6,2 P6,3P6,1

P5,3P5,2

P7,0 P7,2 P7,3P7,1

P4,5P4,4

P5,4

P4,6 P4,7

P5,5

P6,4 P6,6 P6,7P6,5

P5,7P5,6

P7,4 P7,6 P7,7P7,5

WIDTH = 8; TILE_WIDTH = 2;
Each block has 2 * 2 = 4 threads

WIDTH / TILE_WIDTH = 4;
We will use 4 * 4 = 16 blocks

Using a different block size

EuroCC@Greece 14

WIDTH = 8; TILE_WIDTH = 4;
Each block has 4 * 4 = 16 threads

WIDTH / TILE_WIDTH = 2;
We will use 2 * 2 = 4 blocks

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

P0,5P0,4

P1,4

P0,6 P0,7

P1,5

P2,4 P2,6 P2,7P2,5

P1,7P1,6

P3,4 P3,6 P3,7P3,5

P4,1P4,0

P5,0

P4,2 P4,3

P5,1

P6,0 P6,2 P6,3P6,1

P5,3P5,2

P7,0 P7,2 P7,3P7,1

P4,5P4,4

P5,4

P4,6 P4,7

P5,5

P6,4 P6,6 P6,7P6,5

P5,7P5,6

P7,4 P7,6 P7,7P7,5

Col = 0 * 2 + threadIdx.x
Row = 0 * 2 + threadIdx.y

Col = 0

Col = 1

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

Row = 0
Row = 1

blockIdx.x blockIdx.y

blockDim.x blockDim.y

Calculations on block (0, 0) for
TILE_WIDTH = 2

EuroCC@Greece 15

Col = 1 * 2 + threadIdx.x
Row = 0 * 2 + threadIdx.y

Col = 2

Col = 3

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

Row = 0
Row = 1

blockIdx.x blockIdx.y

Calculations on block (0, 1) for
TILE_WIDTH = 2

EuroCC@Greece 16

A first, simple computational kernel for
2-D matrix multiplication
__global__ void MatrixMulKernel(float *M_d, float *N_d, float *P_d, int Width)
{
// Calculate the row index of the P_d element and M_d
int Row = blockIdx.y * blockDim.y + threadIdx.y;

// Calculate the column index of P_d and N_d
int Col = blockIdx.x * blockDim.x + threadIdx.x;

if ((Row < Width) && (Col < Width)) {
float Pvalue = 0.0;
// Each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; k++) {
Pvalue += M_d[Row * Width + k] * N_d[k * Width + Col];

}
P_d[Row * Width + Col] = Pvalue;

}
}

EuroCC@Greece 17

Shared memory

EuroCC@Greece 18

Purpose
Understand how to use the memory hierarchy in CUDA

◦ Registers, shared memory, global memory
◦ Algorithms using “tiles”
◦ How to use barriers

EuroCC@Greece 19

Memory hierarchy from the
programmers point of view
Each thread:

◦ Reads/Writes to registers that belong to it
(per thread registers) (~1 cycle)

◦ Reads/Writes to shared memory that belongs to a block
(per block shared memory)
(~30-50 cycles)

◦ Reads/Writes to global memory that belongs to the grid
(per grid global memory)
(~80-2750 cycles)

◦ Read from constant memory that belongs to the grid
(per grid constant memory)
(~1-7 cycles if data is in cache)

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

EuroCC@Greece 20

Shared memory in CUDA
Special type of memory

◦ Its use must be explicitly specified in the source code
◦ Resides in each Streaming Multiprocessor (SM)
◦ Very fast access, compared to global memory
◦ Accessed in the same way that global memory is accessed

EuroCC@Greece 21

Data type specifiers in CUDA

__device__ is optional when __shared__ or __constant__ is used

Automatic variables reside in registers
◦ Except arrays, which reside in global memory

Variable declaration Memory Scope Lifetime
int LocalVar; register thread thread

__device__ __shared__ int SharedVar; shared block block
__device__ int GlobalVar; global grid application
__device__ __constant__ int ConstantVar; constant grid application

EuroCC@Greece 22

Declaring variables that reside in shared
memory
__global__ void MatrixMulKernel(float *M_d, float *N_d, float *P_d, int Width)
{
__shared__ float M_ds[TILE_WIDTH][TILE_WIDTH];
__shared__ float N_ds[TILE_WIDTH][TILE_WIDTH];

EuroCC@Greece 23

Programming strategy
DRAM memory modules are used to implement global memory – slow access

Better strategy: Divide input data into smaller parts (tiles) in order to exploit shared memory
◦ Decide how input data will be divided into tiles, so that each tile fits into shared memory
◦ Handle each tile with a block of threads:

◦ Copy tile from global to shared memory
◦ Use multiple threads to exploit parallelism at the memory level

◦ Perform computations on the tile that resides in shared memory
◦ Each thread can (and must!) use multiple times each copied data element

◦ Copy results from the shared to the global memory

EuroCC@Greece 24

When not to use shared memory
Assume that:

◦ N data elements must be read from memory
◦ Each element will be used only 1 time
◦ Access time per element

◦ If in global memory: tg

◦ If in shared memory: ts << tg

Total time to access elements
◦ From global memory

◦ Tg = N·tg

◦ From shared memory
◦ Ts = N·tg + N·ts > Tg

More time is required!

EuroCC@Greece 25

When to use shared memory
Assume now that:

◦ N elements must be read from memory
◦ Each element will be used K > 1 times

Total time to access elements
◦ From global memory

◦ Tg = N·Κ·tg

◦ From shared memory
◦ Ts = N·tg + N·(K-1)·ts

But because ts << tg there is a huge gain!

EuroCC@Greece 26

2-D matrix multiplication
using shared memory

EuroCC@Greece 27

Performance issues on the Fermi
architecture

All threads access global memory to read input matrix elements
◦ 2 accesses (8 bytes) for one multiplication and

one addition of single precision numbers
◦ 4 Bytes of memory transfers / FLOP (Floating-Point Operation)
◦ Max. performance of the architecture is 1000 GFLOPS

◦ 4*1000 = 4000 GB/sec memory bandwidth required to achieve max. performance

◦ But Fermi provides 150 GB/s
◦ 150 / 4 = 37.5 GFLOPS can be achieved
◦ Real code achieves only about 25 GFLOPS

Accesses to global memory have to be reduced
drastically to get close to the max. of 1000 GFLOPS

EuroCC@Greece 28

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

Overview of the technique
Repeat

◦ Find a tile in global memory that is accessed by multiple threads
◦ Copy the tile from global to shared memory
◦ Make the threads access the data they need from shared memory

while more tiles are available

EuroCC@Greece 29

Main idea: Use shared memory
to reuse data
Every input element is read from WIDTH threads

Copy each element into shared memory
◦ Multiple threads will read it from there
◦ Reduces required bandwidth to global memory

◦ Tiled algorithms

M

N

P

W
ID

TH

ty

tx W
ID

TH

WIDTHWIDTH

EuroCC@Greece 30

Tiled multiplication
Divide the execution of the computational
kernel into phases

◦ Data access during each phase will be focused
on a single tile of each of M and N

◦ bx, by: Block index on x and y dimensions
◦ tx, ty: Thread index on x and y dimensions

M

N

P

W
ID

TH
W

ID
TH

WIDTHWIDTH

bx

tx
0 2 TILE_WIDTH-14

0 1 2

Psub

by ty

0
2

TILE_WIDTH-1

4

0

1

2
TILE_WIDTH TILE_WIDTH TILE_WIDTH

TI
LE

_W
ID

TH
TI

LE
_W

ID
TH

TI
LE

_W
ID

TH

EuroCC@Greece 31

First step: Copy tile to shared memory
All threads of the block will participate

◦ Each thread will copy a single element from M_d and a single element from N_d

Try to make memory accesses to the global memory coalesced within a warp during the copy
◦ Better bandwidth
◦ More in a while

EuroCC@Greece 32

Second step: Perform partial multiplication
Using the elements copied into shared memory perform as many operations as possible towards
the final result

◦ In the case of matrix multiplication, to calculate partially each element within the current block of
threads

EuroCC@Greece 33

Third step: Write back final result
After a block of threads passes over all tiles, the final result is copied to global memory

EuroCC@Greece 34

Processing block (0,0)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0 N1,1

Shared memory

Shared memory

EuroCC@Greece 35

Processing block (0,0)

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0 N1,1

EuroCC@Greece 36

Shared memory

Shared memory

Processing block (0,0)

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0 N1,1

EuroCC@Greece 37

Shared memory

Shared memory

N1,0

Processing block (0,0)

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,1

Shared memory

Shared memory

EuroCC@Greece 38

Processing block (0,0)

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0 N1,1

Shared memory

Shared memory

EuroCC@Greece 39

Required synchronization construct: Barrier
CUDA API function call

◦ __syncthreads()

All threads of a block must call __syncthreads() before they can continue execution

Required in algorithms that use tiles
◦ Ensures that all elements of the tile have been loaded into shared memory
◦ Ensures that all elements of the tile have been used in computations

EuroCC@Greece 40

How to access tile 0
Accessing tile 0 with 2-D addressing:

◦ M[Row][tx]
◦ Row = by * TILE_WIDTH + ty

◦ N[ty][Col]
◦ Col = bx * TILE_WIDTH + tx

M

N

P

W
ID

TH
W

ID
TH

WIDTHWIDTH

bx

tx
0 2 TILE_WIDTH-14

0 1 2

Psub

by ty

0
2

TILE_WIDTH-1

4

0

1

2
TILE_WIDTH TILE_WIDTH TILE_WIDTH

TI
LE

_W
ID

TH
TI

LE
_W

ID
TH

TI
LE

_W
ID

TH

bx

by

EuroCC@Greece 41

How to access tile 1
Accessing tile 1 with 2D addressing:

◦ M[Row][1 * TILE_WIDTH + tx]
◦ Row = by * TILE_WIDTH + ty

◦ N[1 * TILE_WIDTH + ty][Col]
◦ Col = bx * TILE_WIDTH + tx

M

N

P

W
ID

TH
W

ID
TH

WIDTHWIDTH

bx

tx
0 2 TILE_WIDTH-14

0 1 2

Psub

by ty

0
2

TILE_WIDTH-1

4

0

1

2
TILE_WIDTH TILE_WIDTH TILE_WIDTH

TI
LE

_W
ID

TH
TI

LE
_W

ID
TH

TI
LE

_W
ID

TH

bx

by

EuroCC@Greece 42

How to access tile m
Accessing tile m with 2-D addressing:

◦ M[Row][m * TILE_WIDTH + tx]
◦ N[m * TILE_WIDTH + ty][Col]

Remember that matrices M_d and N_d have
been allocated dynamically

◦ 1-D matrices
◦ Converting 2-D to 1-D addressing:

◦ M[Row * Width + m * TILE_WIDTH + tx]
◦ N[(m * TILE_WIDTH + ty) * Width + Col]

M

N

P

W
ID

TH
W

ID
TH

WIDTHWIDTH

0 2 TILE_WIDTH-14

Psub

by ty

0
2

TILE_WIDTH-1

4

0

1

2
TILE_WIDTH TILE_WIDTH TILE_WIDTH

TI
LE

_W
ID

TH
TI

LE
_W

ID
TH

TI
LE

_W
ID

TH

m * TILE_WIDTH

m
 *

 T
IL

E_
W

ID
TH

…

…

bx
0 1 2

EuroCC@Greece 43

2-D matrix multiplication with tiles
__global__ void MatrixMulKernel(float *M_d, float *N_d, float* P_d, int Width)
{
__shared__ float M_ds[TILE_WIDTH][TILE_WIDTH];
__shared__ float N_ds[TILE_WIDTH][TILE_WIDTH];

int bx = blockIdx.x;
int by = blockIdx.y;
int tx = threadIdx.x;
int ty = threadIdx.y;

// Identify the row and column of the Pd element to work on
int Row = by * TILE_WIDTH + ty;
int Col = bx * TILE_WIDTH + tx;
float Pvalue = 0.0;

EuroCC@Greece 44

2-D matrix multiplication with tiles
// Loop over the M_ds and N_ds tiles required to compute the P_ds element
for (int m = 0; m < Width / TILE_WIDTH; m++) {
// Colaborative loading of M_ds and N_ds tiles into shared memory
M_ds[ty][tx] = M_d[Row * Width + m * TILE_WIDTH + tx];
N_ds[ty][tx] = N_d[Col + (m * TILE_WIDTH + ty) * Width];
__syncthreads();

for (int k = 0; k < TILE_WIDTH; k++) {
Pvalue += M_ds[ty][k] * N_ds[k][tx];

}
__synchthreads();

}
P_d[Row * Width + Col] = Pvalue;

}

EuroCC@Greece 45

Size of tiles
Each block of threads should have as many threads as possible

◦ TILE_WIDTH = 16 gives 16*16 = 256 threads per block
◦ TILE_WIDTH = 32 gives 32*32 = 1024 threads per block

For 16, each block performs 2*256 = 512 transfers of float values from global memory and
256 * (2*16) = 8192 operations

◦ 16 operations/transfer

For 32, each block performs 2*1024 = 2048 transfers of float values from global memory and
1024 * (2*32) = 65536 operations

◦ 32 operations/transfer

EuroCC@Greece 46

Shared memory and threads
Each SM in Fermi has 16KB or 48KB shared memory

◦ The size depends on the exact model of GPU

For TILE_WIDTH = 16, each thread uses2*16*16*4B = 2KB shared memory
◦ We can have up to 8 blocks of threads active

(maximum allowed by Fermi)

For TILE_WIDTH = 32, each thread uses 2*32*32*4B= 8KB shared memory
◦ We can have up to 2 or 6 blocks of threads active

EuroCC@Greece 47

What have we gained?
Using TILE_WIDTH = 16 we manage to reduce the number of accesses to the global memory
16 times

◦ The available bandwidth of 150GB/s can now support (150/4)*16 = 600 GFLOPS!
◦ Compare that to the 37.5 GFLOPS of the initial computational kernel

EuroCC@Greece 48

More results – 8800 GT GPU
Matrix multiplication

◦ Single precision
◦ Size of 4096x4096

EuroCC@Greece 49

https://ecatue.gitlab.io/gpu2018/pages/Cookbook/matrix_multiplication_cuda.html

Implications
Algorithm and source code has to be modified to take advantage of shared memory

Complicates writing and understanding of source code

Need to know the memory hierarchy of the GPU to achieve high performance

EuroCC@Greece 50

Coalesced memory accesses

EuroCC@Greece 51

Global memory bandwidth
What we need What we get

A small 64x4 DRAM bank
A word is 4 bits

Each row has 4 (= 22) words

The bank has 16 (= 24) rows

Memory addresses are 6 bits
◦ First 4 bits identify the row
◦ Last 2 bits identify word within row

EuroCC@Greece 53

Accessing memory

EuroCC@Greece 54

Memory address

0 1 1 0 0 0

0
1
2
3
4
5
6

15

De
co

de

Sense amplifiers

Mux

Accessing memory

EuroCC@Greece 55

Memory address

0 1 1 0 0 1

0
1
2
3
4
5
6

15

De
co

de

Sense amplifiers

Mux

Coalesced memory accesses

EuroCC@Greece 56

Memory address

0 1 1 0 0 0

0
1
2
3
4
5
6

15

De
co

de

Sense amplifiers & cache

Mux

Coalesced memory accesses

EuroCC@Greece 57

Memory address

0 1 1 0 0 1

0
1
2
3
4
5
6

15

De
co

de

Sense amplifiers & cache

Mux

Coalesced memory accesses

EuroCC@Greece 58

Memory address

0 1 1 0 1 0

0
1
2
3
4
5
6

15

De
co

de

Sense amplifiers & cache

Mux

Coalesced memory accesses

EuroCC@Greece 59

Memory address

0 1 1 0 1 1

0
1
2
3
4
5
6

15

De
co

de

Sense amplifiers & cache

Mux

More results – 8800 GT GPU
Matrix multiplication

◦ Single precision
◦ Size of 4096x4096

EuroCC@Greece 60

https://ecatue.gitlab.io/gpu2018/pages/Cookbook/matrix_multiplication_cuda.html

Implications
Algorithm and source code has to be modified to take advantage of coalesced memory accesses

Might complicate understanding of source code

Might complicate understanding of rationale behind the decision of writing the source code in
that specific way

◦ Need to know the design of modern DRAM used for the GPU

EuroCC@Greece 61

Bank conflicts in
shared memory

EuroCC@Greece 62

Shared memory
Shared memory is divided into banks

◦ 16 for Compute Capability 1.x
◦ 32 for Compute Capability ≥ 2.0

Continuous words of 32-bits are stored in continuous banks

Different banks can be accessed simultaneously

If multiple memory addresses being accessed belong to the same bank
◦ Bank conflict
◦ Access is serialized
◦ Bank conflicts exist only for accesses within the same bank

◦ Or a half-warp for Compute Capability 1.x

For Compute Capability ≥ 2.0
◦ There is no bank conflict if the memory address accessed is the same for a number of threads of the warp

◦ Does not hold for Compute Capability 1.x

Example
Left

◦ Linear addressing with a step of 1 for 32-bit
words

◦ No bank conflict

Center
◦ Linear addressing with a step of 2 for 32-bit

words
◦ 2-way bank conflict

Right
◦ Linear addressing with a step of 3 for 32-bit

words
◦ No bank conflict

Example
Left

◦ Random permutation
◦ No bank conflict

Center
◦ Threads 3, 4, 6, 7, 9 access the same 32-bit word

in bank 5
◦ No bank conflict

Right
◦ All threads access the same 32-bit word in each

bank
◦ No bank conflict

More results – 8800 GT GPU
Matrix multiplication

◦ Single precision
◦ Size of 4096x4096

EuroCC@Greece 66

https://ecatue.gitlab.io/gpu2018/pages/Cookbook/matrix_multiplication_cuda.html

Flow control

EuroCC@Greece 67

Flow control
‘if…else’ instruction

◦ Threads are executed in warps
◦ Within each warp, the hardware cannot execute at the same time instructions of the ‘if’ and of the ‘else’ block

◦ If there is no else’, neither instructions that follow the ‘if’

__global__ void function()
{

...
if (condition) {

...
} else {

...
}

}

How the hardware handles the situation
The hardware serializes execution of the different execution paths

Recommendations
◦ All threads within a warp should execute the same instructions

◦ No divergence occurs if different execution paths are followed among different warps

◦ If divergence cannot be completely avoided
◦ Try multiple continuous threads within a warp to execute the same instructions

Summing all elements of a vector
A first implementation

◦ Add together the closest neighboring elements that contain a partial sum
◦ Continue until the final result is calculated

__shared__ float partialSum[];
int t = threadIdx.x;

for (int stride = 1; stride < blockDim.x; stride *= 2) {
__syncthreads();
if (t % (2 * stride) == 0)
partialSum[t] += partialSum[t+stride];

}

Causes branch diversion

0 1 2 3 4 5 76 1098 11

0+1 2+3 4+5 6+7 10+118+9

0...3 4..7 8..11

0..7 8..15

1

2

3

Re
pe

tit
io

ns
Thread 0 Thread 8Thread 2 Thread 4 Thread 6 Thread 10

Observations
During each repetition

◦ Two execution paths per warp
◦ Threads that perform the addition and threads that don’t

At most half of the threads in a warp contribute towards calculating the result
◦ All odd numbered threads don’t contribute already from the first iteration!
◦ After the 5th repetition

◦ Whole warps don’t contribute
◦ Although there is no branch diversion, there is poor exploitation of computational resources

A better implementation
__shared__ float partialSum[];
unsigned int t = threadIdx.x;

for (int stride = blockDim.x; stride > 1; stride >> 1) {
__syncthreads();
if (t < stride)

partialSum[t] += partialSum[t + stride];
}

Schematically
Thread 0

0 1 2 3 … 13 1514 181716 19

0+16 15+311

3

4

Example for blocks of 512 threads
Repetition Threads that calculate Warps

1 256 16

2 128 8

3 64 4

4 32 2

5 16 1

6 8 1

7 4 1

8 2 1

9 1 1

Threads > Warp

Threads < Warp

Warp divergence

Optimizing Parallel Reduction in CUDA
Optimizing Parallel Reduction in CUDA

Goes over a total of 7(!) refinements for such a simple problem
◦ Refinements are tied to the architecture of the GPU

But leads to a 30x total speedup in execution time

http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf

Synchronous and
asynchronous execution

EuroCC@Greece 78

Blocking and non-blocking functions
Synchronous vs. Asynchronous execution

◦ Synchronous:
◦ Calling a function is blocking
◦ Execution is performed serially

◦ Asynchronous:
◦ Calling a function is non-blocking
◦ The control of execution immediately returns to the host

Advantages of asynchronous execution
◦ Overlapping of processing and data transfer on different devices

◦ Not only GPU and CPU
◦ Accessing hard drive, transfer of data over the network, etc.

Asynchronous execution in CUDA
Most functions of the CUDA API that are called from the host are blocking

Exceptions
◦ Calling computational kernels
◦ cudaMemcpy() within the same device (cudaMemcpyDeviceToDevice())
◦ cudaMemcpy() from the host to the device for up to 64kB of data
◦ Asynchronous copying of data

Asynchronous execution
//copy data to device
cudaMemcpy(d_a, a, size * sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(d_b, b, size * sizeof(int), cudaMemcpyHostToDevice);

//execute kernels on device
kernelA<<<blocks, threads>>>(a);
kernelB<<<blocks, threads>>>(b);

//copy back result data
cudaMemcpy(c, d_c, size * sizeof(int), cudaMemcpyDeviceToHost);

Completely
synchronous
execution

cudaMemcpy (H2D) cudaMemcpy (H2D) kernelA kernelB cudaMemcpy (D2H)

Time

Asynchronous execution
//copy data to device
cudaMemcpy(d_a, a, size * sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(d_b, b, size * sizeof(int), cudaMemcpyHostToDevice);

//execute kernel on device
addKernel<<<blocks, threads>>>(d_c, d_a, d_b);

//host execution
myCPUfunction();

//copy back result data
cudaMemcpy(c, d_c, size * sizeof(int), cudaMemcpyDeviceToHost);

Asynchronous
execution
CPU-GPU

cudaMemcpy (H2D) cudaMemcpy (H2D) addKernel

myCPUFunction

cudaMemcpy (D2H)

Time

Simultaneous execution through
pipelining
Latest GPU generations include subsystems for asynchronous execution of calculations and copying of
data

◦ Allows data transfers while processing
◦ GPU architectures Maxwell and Kepler even have double subsystems for copying data

◦ PCIe upstream (Device to Host - D2H)
◦ PCIe downstream (Host to Device - H2D)

◦ Allows simultaneous execution of:
◦ Copying part ‘n-1’ of results from the device to the host
◦ Execution of computational kernel for part ‘n’ of the data
◦ Copying part ‘n+1’ of data from the host to the device for next invocation of the computational kernel

Best strategy to achieve high performance is to overlap data transfers with computations

All GPUs with Compute Capability ≥ 2.0 have the ability to execute simultaneously multiple
computational kernels

◦ Especially useful for problems with a relatively small problem size

CUDA Streams
Put on a queue the tasks to be performed on the GPU

◦ All calls to computational kernels are asynchronous
◦ Control returns immediately to host for execution of next instructions
◦ Can be another computational kernel invocation

◦ The GPU extracts task from streams when it has resources to execute them

Tasks within the same stream are executed in order(FIFO, no overlap)

Tasks among different streams don’t have a global order of execution and can overlap

//create a handle for the stream
cudaStream_t stream;

//create the stream
cudaStreamCreate(&stream);

//do some work in the stream...

//destroy the stream (blocks host until stream is complete)
cudaStreamDestroy(&stream);

Assigning tasks to streams
When calling a computational kernel, a 4th parameter defines the stream to be used

The default stream requires special attention
◦ It is synchronous with all other streams
//execute kernel on device in specified stream
fooKernel<<<blocks, threads, 0, stream>>>();

fooKernel<<<blocks, threads, 0>>>();
barKernel<<<blocks, threads, 0>>>();

fooKernel<<<blocks, threads, 0>>>();
barKernel<<<blocks, threads, 0, stream1>>>();

fooKernel<<<blocks, threads, 0, stream1>>>();
barKernel<<<blocks, threads, 0, stream2>>>();

default stream fooKernel barKernel
CPU

default stream fooKernel
CPU

stream1 barKernel

stream1 fooKernel
CPU

stream2 barKernel

Levels of overlap
Synchronous execution
2-level overlapping

◦ H2D and D2H don’t overlap

3-level overlapping
◦ Both data transfer subsystems are active
◦ Execution subsystem active

◦ Possibly underutilized

5-level overlapping
◦ Both data transfer subsystems are active
◦ Execution subsystem active

◦ Larger workload => larger possibility for 100% utilization

Host can also be exploited at the same time

H2D KernelA D2H

H2D KA1 D2H
KA2 D2H

KA3 D2H
KA4 D2H

H2D KA1 D2H
KA2 D2H

KA3 D2H
KA4 D2H

H2D
H2D

H2D

H2D KA1 D2H
KA2 D2H

KA3 D2H
KA4 D2H

H2D
H2D

H2D

KB1
KB2

KB3
KB4

KC1
KC2

KC3
KC4

KA5 D2HH2D KB5 KC5

	Performance Optimizations in CUDA
	Achieving high performance on GPUs
	Purpose of this presentation
	Simple Matrix Multiplication
	Simple Matrix Multiplication
	Preliminaries
	Correlating threads to matrix elements
	Threads exceeding matrix limits
	Row-major representation of matrices in C/C++
	Multiplication of square matrices
	2-D matrix multiplication�CPU code
	How to organize calculations
	A larger example
	Using a different block size
	Calculations on block (0, 0) for TILE_WIDTH = 2
	Calculations on block (0, 1) for TILE_WIDTH = 2
	A first, simple computational kernel for�2-D matrix multiplication
	Shared memory
	Purpose
	Memory hierarchy from the programmers point of view
	Shared memory in CUDA
	Data type specifiers in CUDA
	Declaring variables that reside in shared memory
	Programming strategy
	When not to use shared memory
	When to use shared memory
	2-D matrix multiplication using shared memory
	Performance issues on the Fermi architecture
	Overview of the technique
	Main idea: Use shared memory�to reuse data
	Tiled multiplication
	First step: Copy tile to shared memory
	Second step: Perform partial multiplication
	Third step: Write back final result
	Processing block (0,0)
	Processing block (0,0)
	Processing block (0,0)
	Processing block (0,0)
	Processing block (0,0)
	Required synchronization construct: Barrier
	How to access tile 0
	How to access tile 1
	How to access tile m
	2-D matrix multiplication with tiles
	2-D matrix multiplication with tiles
	Size of tiles
	Shared memory and threads
	What have we gained?
	More results – 8800 GT GPU
	Implications
	Coalesced memory accesses
	Global memory bandwidth
	A small 64x4 DRAM bank
	Accessing memory
	Accessing memory
	Coalesced memory accesses
	Coalesced memory accesses
	Coalesced memory accesses
	Coalesced memory accesses
	More results – 8800 GT GPU
	Implications
	Bank conflicts in�shared memory
	Shared memory
	Example
	Example
	More results – 8800 GT GPU
	Flow control
	Flow control
	Slide Number 69
	How the hardware handles the situation
	Summing all elements of a vector
	Causes branch diversion
	Observations
	A better implementation
	Schematically
	Example for blocks of 512 threads
	Optimizing Parallel Reduction in CUDA
	Synchronous and asynchronous execution
	Blocking and non-blocking functions
	Asynchronous execution in CUDA
	Asynchronous execution
	Asynchronous execution
	Simultaneous execution through pipelining
	CUDA Streams
	Assigning tasks to streams
	Levels of overlap

