
SCALE: a Cross-Vendor extension of the CUDA
Programming Model for GPUs

Manos Pavlidakis

• The use of accelerators increases

• Accelerator heterogeneity increases [1, 2]

• Different applications have different needs

• Inference CPU, ASIC

• Training GPU, FPGA

EuroCC -- Course 12: introduction to accelerators

The need for High Performance at Low Energy Consumption

75 billion $

https://www.grandviewresearch.com/industry-a
nalysis/data-center-accelerator-market-report

2Pavlidakis

[1] DOE ASCR Basic Research Needs Workshop 2018, Extreme Heterogeneity
[2] HPCA 2018, Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective
[3] ASPLOS 2020, AvA: Accelerated Virtualization of Accelerators

• New accelerator APIs are continually emerging [3]

• E.g. NVIDIA→CUDA, AMD→RoCM, intel → oneAPI

• CUDA is the most widely-used GPGPU programming language

Problem: CUDA Dominates the GPGPU Ecosystem

3

CUDA can only target NVIDIA hardware leading to vendor lock-in !

• CUDA is awesome:

• Early Entry and Maturity: almost 20 years in the market

• Extensive ecosystem: wide range of libraries, debugging tools, profilers

• Broad Adoption in ML and AI: TensorFlow, PyTorch

• Vast community of developers and extensive documentation

EuroCC -- Course 12: introduction to accelerators 3Pavlidakis

• There are two solutions to run the same app on heterogeneous accelerators

Challenge: Make GPU Programs as Portable as CPU ones

EuroCC -- Course 12: introduction to accelerators 4Pavlidakis

1st: Use the accelerator API: Maintaining one app version per accelerator

• N versions, where N equals to the num of accelerators

2nd: Use cross-platform solutions (e.g., SYCL, HIP, Kokkos)

• At least two versions of the code

• Translators as HIPify and SYCLomatic transform CUDA to HIP or SYCL

• Source to source translation has serious issues
- Incomplete code conversion

- NVIDIA CUDA and Clang-CUDA are subtly different languages → The “dialect problem”

- No PTX Support: Inline PTX blocks require manual porting

- Macros are challenging for source translators

Automatic Source2Source Translation Does Not Work

EuroCC -- Course 12: introduction to accelerators 5Pavlidakis

Once done: now you have two codebases to maintain !

SCALE: Ahead-Of-Time Compilation of CUDA for AMD GPUs

● Goal: Expand CUDA to support multiple accelerators (now AMD)

○ Make GPU code as CPU: write once, recompile for different hw

● SCALE

○ Avoids maintaining multiple versions of code

○ Converts PTX Assembly to GPU machine code

○ Enhances CUDA programming model

○ Overcomes the CUDA dialect issue

○ Maps CUDA features to other architectures

EuroCC -- Course 12: introduction to accelerators 6Pavlidakis

Why SCALE ?

EuroCC -- Course 12: introduction to accelerators 7Pavlidakis

Approach Offers a Single
Codebase

Resolves CUDA
Dialect Issue

NVIDIA Proprietary
Free

Cross-platform
(HIP, SYCL, Kokkos)

- ✓ ✓

Clang CUDA ✓ - ✓

Intercept CUDA calls
(ZLUDA)

✓ ✓ -

SCALE ✓ ✓ ✓

Outline

● Motivation and overview

● SCALE’s Clang compiler

○ Enhance CUDA: Inline PTX + Warnings + Extensions

○ Resolve CUDA Dialect Issue

○ Cross-Platform Compatibility

● Evaluation

● Conclusions

EuroCC -- Course 12: introduction to accelerators 8Pavlidakis

SCALE Compiler Process

EuroCC -- Course 12: introduction to accelerators 9Pavlidakis

CUDA application
- device code
- host code
- inline PTX

SCALE
compiler

AMD GPU
 binary

IR

device code or

inline PTX

host code

IR CPU
binary

AMD GPU
backend

x86
backend

Inline PTX Assembly with Optimal Performance

• PTX lop3: does any 3-input bitwise operations

• SCALE converts lop3 to optimal IR

constexpr uin32_t Op = (0xF0 & 0xCC) ^ (~0xAA);
asm(
 "lop3.b32 %0, %0, %1, %2, %3;"
 : "+r"(x)
 : "r"(y), "r"(z), "n"(OP)

);

EuroCC -- Course 12: introduction to accelerators 10Pavlidakis

• LLVM IR

%0 = and i32 %y, %x
%1 = xor i32 %0, %z
%2 = xor i32 %1, -1

• AMD GPU Machine Code
v_and_b32_e32 v3, v4, v3

v_xnor_b32_e32 v2, v5, v3

SCALE clang

AMD backend

Richer Compiler Warnings & Language Extensions

• SCALE adopts clang’s stricter warning behavior

• Projects using -Werror may fail to compile

• [[nodiscard]] throughs warnings when return codes are ignored

• SCALE enhances CUDA with optional language extensions
• clang::loop_unroll offers explicit control over loop unrolling

• __builtin_provable(bool X) used in static analysis

EuroCC -- Course 12: introduction to accelerators 11Pavlidakis

Resolve the CUDA Dialect Issue

• The is no formal CUDA specification → NO “standard”
• The “standard” is defined by NVIDIA’s nvcc behavior
• Many programs fail to compile with clang

• E.g.: The following code is accepted by nvcc, but rejected by clang:
struct Foo {
 const int x = 2;
}
template<typename T>
__device__ void bar(Foo& o, T y) {
 o.x = 7; // Invalid write to a const field
}

• SCALE offers an nvcc mode on its clang compiler

EuroCC -- Course 12: introduction to accelerators 12Pavlidakis

Match different Warp size of NVIDIA and AMD GPUs

• NVIDIA warp size is 32, whereas 64 in (some) AMD GPUs

• This difference affects thread scheduling, synchronization, etc.

• Many CUDA applications assume NVIDIA’s 32-thread warps
• Different warp size leads to incorrect behaviors of operations like ballot and shuffle

• SCALE uses two techniques:

1. warp32 emulation: Splits a 64-lane warps into two 32-lanes
2. cudaLaneMask_t:

• Extends warp-level operations to 64-lanes
• Throughs warnings when wrong warp size is used

EuroCC -- Course 12: introduction to accelerators 13Pavlidakis

Convert NVIDIA’s Compute Capability to AMD’s

• Compute capability (cc) system enables hw specific features

• Returning AMD cc to CUDA apps results in errors
• NVIDIA uses sm_60, sm_80

• AMD uses gfx1030

• SCALE maps NVIDIA compute capability to a AMD

• Using by default sm_86 to ensure compatibility

• Providing a CUDA installation directory per AMD target for more flexibility

EuroCC -- Course 12: introduction to accelerators 14Pavlidakis

Execute CUDA Libraries to AMD GPUs

• CUDA Runtime and Driver libraries

• SCALE re-implements CUDA Runtime and Driver APIs using AMD system calls

• CUDA-X libraries such as cuBLAS and cuFFT

• SCALE maps CUDA-X libraries to their functionality to AMD’s ROCm equivalents

• E.g. cublasCreate(...) → rocblas_create_handle(...)

EuroCC -- Course 12: introduction to accelerators 15Pavlidakis

Outline

● Motivation and overview

● SCALE’s Clang compiler

○ Enhance CUDA: Inline PTX + Warnings + Extensions

○ Resolve CUDA Dialect Issue

○ Cross-Platform Compatibility: Warp size and Compute Capability system

● Evaluation

● Conclusions

EuroCC -- Course 12: introduction to accelerators 16Pavlidakis

Testbed

• Five different AMD GPUs microarchitectures

• gfx900 (Vega 10, GCN 5.0)

• gfx1030 (Navi 21, RDNA 2.0)

• gfx1100 (Navi 31, RDNA 3.0)

• and the datacenter grade gfx942 (MI300X, CDNA3) , gfx94a (MI210, CDNA3)

• Real world applications

• AMGX, FLAMEGPU2, ALIEN, GOMC, GPU JPEG2K, XGBoost, Fais → NO AMD support

• Rodinia suite, GPUJPEG, hashcat, LLaMA C++, Thrust, stdgpu → HIP for AMD

EuroCC -- Course 12: introduction to accelerators 17Pavlidakis

CUDA Coverage

EuroCC -- Course 12: introduction to accelerators 18Pavlidakis

• SCALE currently supports

• 13# open-source CUDA projects

• 5# AMD GPU architectures

amgX FLAMEGPU2
alien

GOMC gpujpeg2k XGBoost

Run on AMD only with SCALE

• To run all of those SCALE covers

• 88% of the CUDA 12.6 runtime API

• 70%of the CUDA driver API

• 80% of the CUDA math API

• 100% cuSOLVER, cuBLAS, and cuFFT

GPUJPEG

cycles hashcat

llamathrust

Multiple code bases:
HIP for AMD and CUDA for NVIDIA

Faiss

stdgpu

SCALE offers near ROCm (native) performance

EuroCC -- Course 12: introduction to accelerators 19Pavlidakis

• Currently we focus in coverage and not in optimizations

Summary

• SCALE enables seamless execution of CUDA apps to AMD GPUs using

• A clang based compiler: eliminates the need for multiple code based

• An nvcc mode to its compiler to resolve the “CUDA dialect issue”

• Language extensions to enhance GPU programming

• We demonstrate SCALE’s capabilities using

• 13# real world frameworks

• 5# AMD architectures

EuroCC -- Course 12: introduction to accelerators 20Pavlidakis

Demo: run CUDA apps with SCALE, HIP, and CUDA

EuroCC -- Course 12: introduction to accelerators 21Pavlidakis

https://docs.google.com/file/d/1l0REZOorcOXaPKbM6wcbFmA8SWdnynuL/preview

Demo: HIPify issues

EuroCC -- Course 12: introduction to accelerators 22Pavlidakis

https://docs.google.com/file/d/1-zW0SnPGBIuLiB6kMtir1HJ4Tnzpbk-T/preview

SCALE: a Cross-Vendor extension of the CUDA
Programming Model for GPUs

Thank you

Manos Pavlidakis

manos@spectralcompute.co.uk

EuroCC -- Course 12: introduction to accelerators 23Pavlidakis

