

HPC Training Series: HPC Quantum Monte Carlo library (QMCkl)

Vijay Gopal Chilkuri, Evgeny Posenitskiy, William Jalby, Anthony Scemama

09-12-2024

Targeting Real Chemical Accuracy at the Exascale project has received funding from the European Union Horizon 2020 research and innovation programme under Grant Agreement **No. 952165.**

Introduction – TREX

- × TREX CoE: Targeting REal chemical accuracy at the eXascale
- × Started in October 2020, ended in March 2024
- × Objective: making codes ready for exascale systems
- × How ? Instead of rewriting codes, provide libraries
 - × One library for high-performance (QMCkl)
 - × One library for exchanging information (TREXIO)

Introduction to QMCkl

× QMCkl: High-performance Quantum Monte Carlo library

Development of Accurate and Efficient Algorithms

- × Fast and Accurate Calculations: Jastrow Factor and DGEMM
- × Conclusion

Introduction to QMCkl

× QMCkl: High-performance Quantum Monte Carlo library

Development of Accurate and Efficient Algorithms

× Fast and Accurate Calculations: Jastrow Factor and DGEMM

× Conclusion

QMCkl: A unified approach to accelerating Quantum Monte Carlo Codes

Quantum Monte Carlo kernel library (QMCkl)

QMCkl: Algorithms and APIs implemented

Quantum Monte Carlo method

$$\hat{H}|\Psi\rangle = \left(-\frac{1}{2}\nabla^2 + V\right)|\Psi\rangle = E|\Psi\rangle$$

$$E = \int_{R} \Psi(R)(H\Psi)(R) dR = \int_{R} E_L(R) \Psi^2 dR, \text{ where, } R = (r_1, \dots, r_i, \dots, r_n)$$

$$\langle E \rangle_{\Psi^2} = \frac{1}{N_{MC}} \sum_{i=1}^{N_{MC}} E_L(R_i) \text{ with, } E_L(R) = \frac{(\hat{H}\Psi)(R)}{\Psi(R)}$$

Introduction – QMCkl

Quantum Monte Carlo method

Simulation: N₂ molecule – 14e, 2 Nuclei $\langle E\rangle_{\Psi^2}=\frac{1}{N_{MC}}\sum_{i=1}^{N_{MC}}E_L(R_i)$

QMCkl: Algorithms and APIs implemented

Kernels Needed

 $\Psi(r_1, \ldots, r_n)$: Wavefunction $\overrightarrow{\nabla} \Psi(r_1, \ldots, r_n)$: Drift Vector $\nabla^2 \Psi(r_1, \ldots, r_n)$: Kinetic Energy Kernels well Implemented and Tested

AOs: $\chi(r_i), \overrightarrow{\nabla}\chi(r_i), \nabla^2\chi(r_i)$ MOs: $\phi(r_i), \overrightarrow{\nabla}\phi(r_i), \nabla^2\phi(r_i)$ Inverse of small matrices

Jastrow correlation factor (eN, ee, eeN)

Quantum Monte Carlo kernel library (QMCkl)

Introduction – QMCkl

Quantum Monte Carlo karnal lihrary (ON/CKI)

Introduction – QMCkl

Quantum Monte Carlo kernel library (OM/Ckl)

Introduction to QMCkl

× QMCkl: High-performance Quantum Monte Carlo library

Development of Accurate and Efficient Algorithms

× Fast and Accurate Calculations: Jastrow Factor and DGEMM

× Conclusion

Single slater determinant: no static and part of dynamic correlation Multi-determinant Ψ_T : static and part of dynamic correlation

 N_{det}

 $\Psi_T = \sum^{acc} C_i D_i$

Jastrow slater multi-determinant Ψ_T : static and dynamic correlation

 $\Psi_T = \mathcal{J}(e, e, n) \sum_{i=1}^{N_{det}} \mathcal{V}_i D_i$

3-body Jastrow factor

Multi-determinantal Fully parallel

Quantum Monte Carlo ansätze

Chilkuri, Vijay Gopal, and Frank Neese, *J. Comput. Chem.* **2021**, 42.14, 982-1005.

Schautz, Friedemann, and Claudia Filippi, *J. Chem. Phys.* **2004**, 120.23, 10931-10941.

Slater determinants

Jastrow 3-body Correlation Factor

electron-electron distances

electron-nucleus distances

Anthony Scemama, Vijay Gopal Chilkuri and Claudia Filippi, *in preparation*

Jastrow 3-body Correlation Factor

$$J_{\text{een}}(\mathbf{r}, \mathbf{R}) = \sum_{\alpha=1}^{N_{\text{nucl}}} \sum_{i=1}^{N_{\text{elec}}} \sum_{j=1}^{i-1} \sum_{p=2}^{N_{\text{nord}}} \sum_{k=0}^{p-1} \sum_{l=0}^{p-k-2\delta_{k,0}} c_{lkp\alpha} (r_{ij})^k \left[(R_{i\alpha})^l + (R_{j\alpha})^l \right] (R_{i\alpha} R_{j\alpha})^{(p-k-l)/2}$$

Scaling: $\mathcal{O}(N_{ord}N_{nuc}N_{elec}^2)$

Anthony Scemama, Vijay Gopal Chilkuri and Claudia Filippi, in preparation

Jastrow 3-body Correlation Factor

$$J_{\text{een}}(\mathbf{r}, \mathbf{R}) = \sum_{\alpha=1}^{N_{\text{nucl}}} \sum_{i=1}^{N_{\text{elec}}} \sum_{j=1}^{i-1} \sum_{p=2}^{N_{\text{nord}}} \sum_{k=0}^{p-1} \sum_{l=0}^{p-k-2\delta_{k,0}} c_{lkp\alpha} (r_{ij})^k \left[(R_{i\alpha})^l + (R_{j\alpha})^l \right] (R_{i\alpha} R_{j\alpha})^{(p-k-l)/2}$$

can be rewritten as

$$J_{\text{een}}(\mathbf{r}, \mathbf{R}) = \sum_{p=2}^{N_{\text{nord}}} \sum_{k=0}^{p-1} \sum_{l=0}^{p-k-2\delta_{k,0}} \sum_{\alpha=1}^{N_{\text{nucl}}} c_{lkp\alpha} \sum_{i=1}^{N_{\text{elec}}} \overline{\mathbf{R}}_{i,\alpha,(p-k-l)/2} \ \overline{\mathbf{P}}_{i,\alpha,k,(p-k+l)/2} \ (\downarrow \text{ complexity})$$

with

$$\bar{P}_{i,\alpha,k,l} = \sum_{j=1}^{N_{elec}} \bar{r}_{i,j,k} \bar{R}_{j,\alpha,l}.$$
(GEMM)

Anthony Scemama, Vijay Gopal Chilkuri and Claudia Filippi, *in preparation*

Jastrow 3-body Correlation Factor $J_{\text{een}}(\mathbf{r}, \mathbf{R}) = \sum_{\alpha=1}^{N_{\text{nucl}}} \sum_{i=1}^{N_{\text{elec}}} \sum_{j=1}^{i-1} \sum_{p=2}^{N_{\text{nord}}} \sum_{k=0}^{p-1} \sum_{l=0}^{p-k-2\delta_{k,0}} c_{lkp\alpha} (r_{ij})^k \left[(R_{i\alpha})^l + (R_{j\alpha})^l \right] (R_{i\alpha} R_{j\alpha})^{(p-k-l)/2}$

can be rewritten as

$$J_{\text{een}}(\mathbf{r}, \mathbf{R}) = \sum_{p=2}^{N_{\text{nord}}} \sum_{k=0}^{p-1} \sum_{l=0}^{p-k-2\delta_{k,0}} \sum_{\alpha=1}^{N_{\text{nucl}}} c_{lkp\alpha} \sum_{i=1}^{N_{\text{elec}}} \bar{\mathbf{R}}_{i,\alpha,(p-k-l)/2} \bar{\mathbf{P}}_{i,\alpha,k,(p-k+l)/2} (\downarrow \text{ complexity})$$
with
$$\bar{\mathbf{P}}_{i,\alpha,k,l} = \sum_{j=1}^{N_{\text{elec}}} \bar{\mathbf{r}}_{i,j,k} \bar{\mathbf{R}}_{j,\alpha,l} (\text{GEMM}) \quad \text{Scaling: } \mathcal{O}(\mathbf{N}_{\text{nuc}}\mathbf{N}_{\text{elec}}^2)$$
ama, Vijay Gopal Chilkuri and Claudia Filippi, *in*

Anthony Scemama, Vijay Gopal Chilkuri and Claudia Filippi, *preparation*

Speedup for Jastrow Factor
 > DGEMM based algorithm shows

 large speedup over naïve algorithm

 > Automatic OpenMP based intra
 node parallelization

Final Speedup (vs Doc) \rightarrow 35× for 1000 electrons ₅-

High-Performance Implementation: Jastrow Factor

Speedup for Jastrow Factor
 DGEMM based algorithm shows

 large speedup over naïve algorithm

 Automatic OpenMP based intranode parallelization

Final Speedup (vs Doc) \rightarrow 2× for 100 electrons ¹⁰ Final Speedup (vs Doc) \rightarrow 35× for 1000 electrons

Introduction and Motivation

- × Introduction: Biological N₂ reduction
- × Phenomenological models

Development of Accurate and Efficient Algorithms

Fast and Accurate Calculations: Jastrow Factor and DGEMM
 Conclusion

Naïve DGEMM vs Intel MKL

- × Naïve DGEMM is 10x slower
- Performance worse especially for small sizes
- × State of the art Intel MKL

Hierarchical Data Layout

- × Blocking of data
- × Tiling based on Hardware Caches
- × Highly efficient memory access
- × Almost zero cache miss (prefetch)
- × Aligned allocation of blocks and tiles
 - \times More information than MKL

Goto, Kazushige, and Robert A. van de Geijn. *ACM Transactions on Mathematical Software (TOMS)* **2008**, 34.3, 1-25

Core Block Layout

- × μ Architecture Skylake
- × Fast memory buffers
 - × Cache Layout
 - × L2 and L1 cache
 - × Register file
- × Port Layout

Goto, Kazushige, and Robert A. van de Geijn. *ACM Transactions on Mathematical Software (TOMS)* **2008**, 34.3, 1-25

Goto, Kazushige, and Robert A. van de Geijn. *ACM Transactions on Mathematical Software (TOMS)* **2008**, 34.3, 1-25

https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)

Optimized Cache Access

× Blocking of data

Matrix

Block

- × Tiling based on Hardware Caches
- × Highly efficient memory access
- × Almost zero cache miss (prefetch) Tile

Micro-kernel

Goto, Kazushige, and Robert A. van de Geijn. *ACM Transactions on Mathematical Software (TOMS)* **2008**, 34.3, 1-25

Micro-Kernel : ASM Volatile

- × ASM allows complete control over
 - register allocation
- Portability ensured by codegenerator x86 and RISC-V
- × Bypassing the compiler
- × Compiler independent performance

Algorithm 1 Micro-kernel DGEMM algorithm	rithm
Require: $KC \neq 0$	
$k \leftarrow 1$	Code concreter for xQC and ADAA
for $k \leftarrow 1$ to KC do	Code generator for X86 and ARIVI
$\texttt{VR1} \leftarrow \texttt{VLOAD}(\texttt{A(0, k)})$	Instruction set
$VR2 \leftarrow VLOAD(A(0+VL, k))$	
VR3 \leftarrow VBROADCAST(B(1, k))	
VR4 \leftarrow VBROADCAST(B(2, k))	▷ FMA on first pair of Bs
VR5 \leftarrow VFMA(VR5, VR1, VR3)	
VR6 \leftarrow VFMA(VR6, VR2, VR3)	
VR7 \leftarrow VFMA(VR7, VR1, VR4)	
VR8 \leftarrow VFMA(VR8, VR2, VR4)	
VR3 \leftarrow VBROADCAST(B(1, k))	
VR4 \leftarrow VBROADCAST(B(2, k))	▷ FMA on second pair of Bs
$\texttt{VR9} \leftarrow \texttt{VFMA}(\texttt{VR9}, \texttt{VR1}, \texttt{VR3})$	
$\texttt{VR10} \leftarrow \texttt{VFMA}(\texttt{VR10}, \texttt{VR2}, \texttt{VR3})$	
$\texttt{VR11} \leftarrow \texttt{VFMA}(\texttt{VR11}, \texttt{VR1}, \texttt{VR4})$	
$VR12 \leftarrow VFMA(VR12, VR2, VR4)$	
VR3 \leftarrow VBROADCAST(B(1, k))	
$VR4 \leftarrow VBROADCAST(B(2, k))$	▷ FMA on last pair of Bs
$VR13 \leftarrow VFMA(VR13, VR1, VR3)$	
$VR14 \leftarrow VFMA(VR14, VR2, VR3)$	
$VR15 \leftarrow VFMA(VR15, VR1, VR4)$	
$VR16 \leftarrow VFMA(VR16, VR2, VR4)$	
$k \leftarrow k+1$	
end for	

Micro-Kernel : ASM Volatile

- × ASM allows complete control over
 - register allocation
- × Portability ensured by codegenerator *x86* and *ARM*
- × Bypassing the compiler
- × Compiler independent performance

Algorithn	n 1 Mici	ro-kernel [DGEMM algo	rithm							
Require:	$\mathrm{KC} \neq \mathrm{O}$										
$\texttt{k} \gets \texttt{1}$											
for $\mathtt{k} \leftarrow$	- 1 to K(C do									
VR1	\leftarrow VLC	DAD(A(O,	k))								
VR2	\leftarrow VLC	DAD(A(O+V	/L, k))								
VR3	\leftarrow VBF	ROADCAST	(B(1, k))	Dorte	2 and 2	(2/2)					
VR4	\leftarrow VBF	ROADCAST	(B(2, k))	PULS -		(5/2)		⊳ FMA	on first pair of Bs		
VR5	\leftarrow VFM	1A(VR5, N	VR1, VR3)								
VR6	\leftarrow VFM	1A(VR6, N	/R2, VR3)	Ports $= 0 \pm 1 + 5 (1/2)$							
VR7	\leftarrow VFM	MA(VR7, N	VR1, VR4)	10113 (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-, 2)					
VR8	\leftarrow VFM	1A(VR8, N	VR2, VR4)								
VR3	\leftarrow VBF	ROADCAST	(B(1, k))								
VR4	\leftarrow VBF	ROADCAST	(B(2, k))				\triangleright	FMA on	second pair of Bs		
	Port 0	Port 1	Port 5	Port 6	Port 2	Port 3	Port 4	Port 7			
	μ <mark>ο</mark> ρ	μ <mark>ο</mark> ρ	μ <mark>ο</mark> Ρ	μ <mark>ο</mark> ρ	μор	μ <mark>ο</mark> Ρ	μ <mark>ο</mark> Ρ	μ <mark>ο</mark> ρ			
		INT ALU	INT ALU	INT ALU Branch	AGU Load Data	AGU Load Data	Store Data	AGU			
	INT Vect ALU	INT Vect ALU	IT Vect ALU INT Vect AL		Load Data	Load Data	·				
	NT Vect MUL FP FMA	INT Vect MUL FP FMA	TVect MUL INT Vect M FP FMA FP FMA	л			512bit/cycle	•			
10	512b f	used	512b (zmm only)	<u> </u>				File	n last pair of Bs		
	AES Vect String	Bit Scan	(optional)					LUS			
	FP DIV Branch										
					_						
E C	xecut	tion Eng	gine			Store	Buffer & F	orwarding			
k ←	k+1						(56 entrie	s)			
end for											

Comparison with MKL (Skylake) AVX512

× 2x Speedup for 200 < *M* = *N* < 500

× Portability and Productivity

× Modular code

× DGEMV (u.A, A.v)

× Dot product

https://github.com/TREX-CoE/qmckl

Application to the Jastrow Factor

- × DGEMM based algorithm shows
 - large speedup over naïve algorithm
- × QMCkl DGEMM gives further
 speedup for small # of electrons
- Final Speedup (vs Doc) \rightarrow 5× for 100 electrons Final Speedup (vs Doc) \rightarrow 35× for 1000 electrons
- https://github.com/TREX-CoE/qmckl
 https://github.com/TREX-CoE/qmckl_dgemm

Quantum Monte Carlo kernel library (QMCkl)

python setup.py install

\$ tar -zxvf qmckl.tar.gz

- \$ cd qmckl
- \$./configure --enable-hpc
- **\$** make -j 32
- \$ make check
- \$ make install

× Very few dependencies

- × BLAS/LAPACK (CPU)
- × TREXIO (optional) and HDF5 (optional)
- > BSD license: very permissive, you
 can distribute the .tar.gz with your
 code.
- × Hosted on GitHub:
- https://github.com/trex-coe/qmckl

UP | HOME Table of Contents

⊙ Introduction

QMCkl: Literate Programming

The atomic basis set is defined as a list of shells. Each shell centered on a nucleus A, possesses a given angular momentum l and radial function R_s . The radial function is a linear combination of primitive functions that can be of type Slater (p = 1) or Gaussian (p = 2):

$$R_s(\mathbf{r}) = \mathcal{N}_s |\mathbf{r} - \mathbf{R}_A|^{n_s} \sum_{k=1}^{N_{\text{prim}}} a_{ks} f_{ks} \exp\left(-\gamma_{ks} |\mathbf{r} - \mathbf{R}_A|^p\right).$$

In the case of Gaussian functions, n_s is always zero. The normalization factor \mathcal{N}_{\circ} ensures that all the functions of the shell are normalized (integrate) to unity. Usually, basis sets are given a combination of normalized primitives, so the normalization coefficients of the primitives, f_{ks} , need also to be provided.

Atomic orbitals (AOs) are defined as

$$\chi_i(\mathbf{r}) = \mathcal{M}_i P_{\eta(i)}(\mathbf{r}) R_{\theta(i)}(\mathbf{r})$$

where $\theta(i)$ returns the shell on which the AO is expanded, and $\eta(i)$ denotes which angular function is chosen and P are the generating functions of the given angular momentum $\eta(i)$. Here, the parameter \mathcal{M}_i is an extra parameter which allows the normalization of the different functions of the same shell to be different, as in GAMESS for example.

In this section we describe first how the basis set is stored in the context, and then we present the kernels used to compute the values. gradients and Laplacian of the atomic basis functions.

⊙ Headers noexport ... Context • Constant data Source Code (org-mode)

The following arrays are stored in the context, and need to be set when initializing the library:

NAME: constant_data

26	5k 🖬 qmckl/org/qmckl_	ao.org 184:0 1%		Org (+1)	រ៉ៀ master	8
	type shell_num prim_num nucleus_index nucleus_shell_num shell_ang_mom shell_prim_num	char int64_t int64_t int64_t[nucl_num] int64_t[nucl_num] int32_t[shell_num]	Gaussian ('G') or Slater ('S') Number of shells Total number of primitives Index of the first shell of each nucleus Number of shells per nucleus Angular momentum of each shell Number of primitives in each shell			
	Variable	Type	Description			

Atomic Orbitals

1 Introduction

The atomic basis set is defined as a list of shells. Each shell *s* is centered on a nucleus *A*. possesses a given angular momentum l and a radial function R_s . The radial function is a linear combination of *primitive* functions that can be of type Slater (p = 1) or Gaussian (p = 2):

$$R_s(\mathbf{r}) = \mathcal{N}_s |\mathbf{r} - \mathbf{R}_A|^{n_s} \sum_{k=1}^{N_{ ext{prim}}} a_{ks} \, f_{ks} \exp(-\gamma_{ks} |\mathbf{r} - \mathbf{R}_A|^p).$$

In the case of Gaussian functions, n_{\circ} is always zero. The normalization factor \mathcal{N}_{\circ} ensures that all the functions of the shell are normalized (integrate) to unity. Usually, basis sets are given a combination of normalized primitives, so the normalization coefficients of the primitives, f_{ks} , need also to be provided.

Atomic orbitals (AOs) are defined as

$$\chi_i(\mathbf{r}) = \mathcal{M}_i P_{\eta(i)}(\mathbf{r}) R_{\theta(i)}(\mathbf{r})$$

where $\theta(i)$ returns the shell on which the AO is expanded, and $\eta(i)$ denotes which angular function is chosen and P are the generating functions of the given angular momentum $\eta(i)$. Here, the parameter \mathcal{M}_i is an extra parameter which allows the normalization of the different functions of the same shell to be different, as in GAMESS for example.

In this section we describe first how the basis set is stored in the context, and then we present the kernels used to compute the values, gradients and Laplacian of the atomic basis functions.

^{2 Context} Documentation (website)

2.1 Constant data

The following arrays are stored in the context, and need to be set when initializing the library:

Variable	Туре	Description
type	char	Gaussian ('G') or Slater ('S')
shell_num	int64_t	Number of shells
prim_num	int64_t	Total number of primitives
nucleus_index	int64_t[nucl_num]	Index of the first shell of each nucleus
nuclous shall nu	m int64 t[nucl num]	Number of challs per nucleus

-12-)

 $\langle E \rangle_{\Psi^2} = \sum_{i=1}^{\infty} E_L(R_i) \text{ with, } E_L(R) = \frac{(\hat{H}\Psi)}{\Psi(E)}$

factor_een_gl(j,4 $R_{
m i}$ = factor_een_gl(j,4,nw) + (

 $\Psi_T = \mathcal{J}(e, e, n)$

1 def getLocalEnergyAndWeights(n_steps, nelec):

 $ctx = pq.context_create()$

pq.trexio_read(ctx, fname) print('trexio_read: passed')

mo_num = pq.get_mo_basis_mo_num(ctx)

elec_up_num = pq.get_electron_up_num(ctx) elec_dn_num = pq.get_electron_down_num(ctx) elec_num = elec_up_num + elec_dn_num coord = np.random.uniform(-5, 5, 3*nelec*n_steps) walk_num = n_steps

pq.set_electron_coord(ctx, 'T', walk_num, coord)

ao_type = pq.get_ao_basis_type(ctx)

size max = 5*walk num*elec num*mo num

mo_vgl = pq.get_mo_basis_mo_vgl(ctx, size_max)

Set determinants pq.set_determinant_type(ctx, ao_type)

 $det_num_alpha = 1$ det_num_beta = 1 pq.set_determinant_det_num_alpha(ctx, elec_up_num) pq.set_determinant_det_num_beta(ctx, elec_dn_num)

mo_index_alpha = [i+1 for i in range(det_num_alpha*walk_num*elec_up_num)] mo_index_beta = [i+1 for i in range(det_num_beta*walk_num*elec_dn_num)] pg.set_determinant_mo_index_alpha(ctx, mo_index_alpha) pq.set_determinant_mo_index_beta(ctx, mo_index_beta)

Local energy el = pq.get_local_energy(ctx, walk_num) print(f"Local Energy = {el_m}")

r<mark>eturn</mark>(el_m)

Follow us fin company/trex-eu @trex_eu

Targeting Real Chemical Accuracy at the Exascale project has received funding from the European Union Horizon 2020 research and innovation programme under Grant Agreement **No. 952165.**

do j = 1, elec_num

) * cn

tmp_c(j,a,m,k,nw)

tmp_c(j,a,m+l,k,nw)

do ii = 1, 4

end do

cn = cn + cn

do j = 1, elec num

) * cn

end do

Conclusions

Scientists Reference Code

(dtmp_c(j,ii,a,m,k,nw)) * een_rescaled_n(j,a,m+l,nw) (dtmp_c(j,ii,a,m+l,k,nw)) * een_rescaled_n(j,a,m ,nw)

(dtmp_c(j,1,a,m ,k,nw)) * een_rescaled_n_gl(j,1,a,m+l,nw) + &

(dtmp_c(j,2,a,m ,k,nw)) * een_rescaled_n_gl(j,2,a,m+1,nw) + & (dtmp_c(j,3,a,m ,k,nw)) * een_rescaled_n_gl(j,3,a,m+1,nw) + &

(dtmp_c(j,1,a,m+l,k,nw)) * een_rescaled_n_gl(j,1,a,m ,nw) + &

(dtmp_c(j,2,a,m+l,k,nw)) * een_rescaled_n_gl(j,2,a,m ,nw) + &

(dtmp_c(j,3,a,m+l,k,nw)) * een_rescaled_n_gl(j,3,a,m ,nw) &

* een_rescaled_n_gl(j,ii,a,m,nw)

factor_een_gl(j,ii,nw) = factor_een_gl(j,ii,nw) + (

factor_een_gl(j,4,nw) = factor_een_gl(j,4,nw) + (

HPC Kernel

$$J_{\text{een}}(\mathbf{r}, \mathbf{R}) = \sum_{p=2}^{N_{\text{nord}}} \sum_{k=0}^{p-1} \sum_{l=0}^{p-k-2\delta_{k,0}} \sum_{\alpha=1}^{N_{\text{nucl}}} c_{lkp\alpha} \sum_{i=1}^{N_{\text{elec}}} \bar{\mathbf{R}}_{i,\alpha,(p-k-l)/2} \bar{\mathbf{P}}_{i,\alpha,k,(p-k+l)/2} (\downarrow \text{ complexity})$$

with

$$ar{\mathtt{P}}_{i,lpha,k,l} = \sum_{j=1}^{N_{\mathsf{elec}}} ar{\mathtt{r}}_{i,j,k} \ ar{\mathtt{R}}_{j,lpha,l}.$$
 (GEMM)

* een_rescaled_n_gl(j,ii,a,m+l,nw) + & × QMCkI: High Performance code + & + & development &

- × Scientists: Documentation (code)
- × Scientists + HPC: Rewriting algorithm/equations ("LaTeX work") for HPC
- × HPC Experts: Optimization

end do

Further work and Perspectives

- × Work in Progress for GPU based Jastrow factor calculation
- × Collaborations for further work on GPUs:
 - × Runtimes StarPU with INRIA Bordeaux
 - × Performance Analysis MAQAO UVSQ (William Jalby)
 - × Blocking/Linear Algebra for GPU Chameleon with INRIA Bordeaux

Introduction and Motivation

× Introduction: Biological N₂ reduction

× Phenomenological models

Conclusion and Perspectives

× Fast and Accurate Calculations: Jastrow Factor and DGEMM

× Conclusions

TREXIO for Quantum Chemistry data

12/9/24

TREXIO for Quantum Chemistry data

roup: data	:	[data type	,	[list of dimensions]]
nucleus": {					
"num"	:	["dim"	,	[]],
"charge"	:	["float"	,	["nucleus.num"]],
"coord"	:	["float"	,	["nucleus.num", "3"]],
"label"	:	["str"	,	["nucleus.num"]],
"point_group"	:	["str"	,	[]],
"repulsion"	:	["float"	,	[]]
}					

- × **Self-Consistent**: Self-contained No external knowledge required
- × AOs: Cartesian, Spherical, Numerical, etc...
- × Compact Storage: 2e Integrals, CI coefficients (Det, CSFs)

More details in the TREXIO documentation*

- × Source code in pure **C** (C99): Best performance/ portability
- × Performant HDF5 backends for parallel I/O
- × Interfaces: Fortran, Python, Ocaml, Julia, Rust

Posenitskiy, E., <u>Chilkuri, V. G.</u>, Ammar, A., Hapka, M., Pernal, K., Shinde, R., ... & Scemama, A. (**2023**). *The Journal of chemical physics*, *158*(17).

^{*} https://trex-coe.github.io/trexio/trex.html

TREXIO Today

