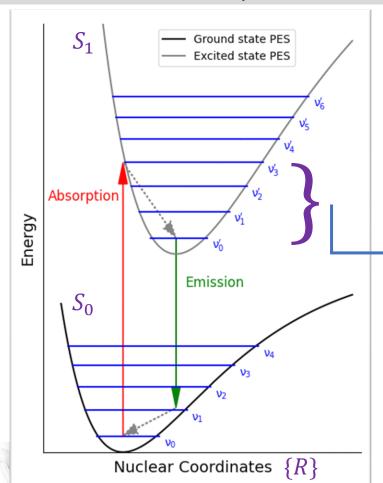
Charge Transfer Unveiled: An Exciting Journey Through TD-DFT

Case-study Walkthrough



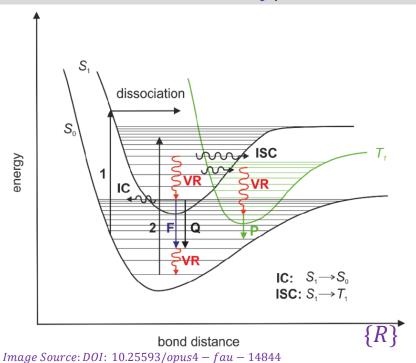
Walkthrough Tutorial by Emmanuel N. Koukaras Assist. Prof. at Aristotle University of Thessaloniki

Fundamental Concepts

Electronic transitions (ultraviolet or visible/optical) Vibronic transitions (infrared)

Rotational transitions (microwave)

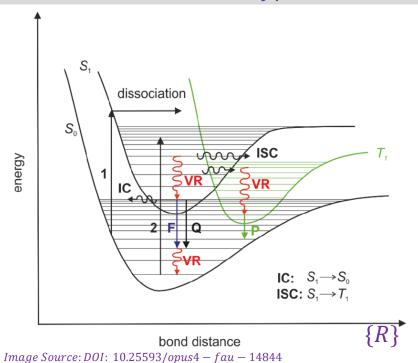
Electronic transition vs coupled electronic and vibronic transition


 $\nu_0 \rightarrow \nu_0'$, no vibronic coupling $\nu_0 \rightarrow \nu_1'$, with vibronic coupling

Vibrational Relaxation.

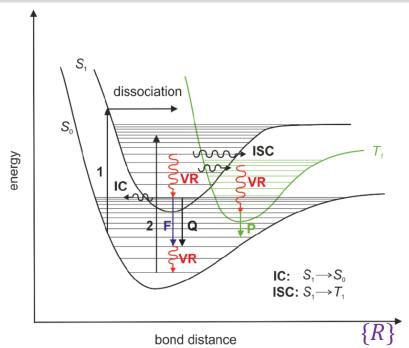
 S_0 , Ground state (singlet spin multiplicity) S_n , n^{th} electronic excited state (singlet spin mult.) T_1 , first triplet excited state

Excitation Processes (Types)


Source: chem.libretexts.org Process	Transition	Timescale (sec)
Light Absorption (Excitation)	$S_0 \rightarrow S_n$	ca. 10 ⁻¹⁵ (instantaneous)
Internal Conversion	$S_n \to S_1$	10 ⁻¹⁴ to 10 ⁻¹¹
Vibrational Relaxation	$S_n^* \to S_n$	10 ⁻¹² to 10 ⁻¹⁰
Intersystem Crossing	$S_1 \to T_1$	10 ⁻¹¹ to 10 ⁻⁶
Fluorescence	$S_1 \rightarrow S_0$	10 ⁻⁹ to 10 ⁻⁶
Phosphorescence	$T_1 \to S_0$	10 ⁻³ to 100
Non-Radiative Decay	$\begin{array}{c} S_1 \rightarrow S_0 \\ T_1 \rightarrow S_0 \end{array}$	10 ⁻⁷ to 10 ⁻⁵ 10 ⁻³ to 100

Radiative transitions: transitions between two molecular states where a photon is emitted or absorbed with energy equal to the energy difference of the states. Non-radiative transitions: transitions between two molecular states without the absorption or emission of photons.

Excitation Processes (Types)



Source: chem.libretexts.org Process	Transition	Timescale (sec)
Light Absorption (Excitation)	$S_0 \rightarrow S_n$	ca. 10 ⁻¹⁵ (instantaneous)
Internal Conversion	$S_n \rightarrow S_1$	10 ⁻¹⁴ to 10 ⁻¹¹
Vibrational Relaxation	$S_n^* \to S_n$	10 ⁻¹² to 10 ⁻¹⁰
Intersystem Crossing	$S_1 \to T_1$	10 ⁻¹¹ to 10 ⁻⁶
Fluorescence	$S_1 \rightarrow S_0$	10 ⁻⁹ to 10 ⁻⁶
Phosphorescence	$T_1 \to S_0$	10 ⁻³ to 100
Non-Radiative Decay	$\begin{array}{c} S_1 \to S_0 \\ T_1 \to S_0 \end{array}$	10 ⁻⁷ to 10 ⁻⁵ 10 ⁻³ to 100

Absorption. Radiative transition from a lower to a higher electronic state of a molecule. Fluorescence. Radiative transition between two electronic states of the same spin multiplicity. Phosphorescence. Radiative transition between two electronic states of different spin multiplicity.

Excitation Processes (Types)

Source: chem.libretexts.org Process	Transition	Timescale (sec)
Light Absorption (Excitation)	$S_0 \rightarrow S_n$	ca. 10 ⁻¹⁵ (instantaneous)
Internal Conversion	$S_n \rightarrow S_1$	10 ⁻¹⁴ to 10 ⁻¹¹
Vibrational Relaxation	$S_n^* \to S_n$	10 ⁻¹² to 10 ⁻¹⁰
Intersystem Crossing	$S_1 \to T_1$	10 ⁻¹¹ to 10 ⁻⁶
Fluorescence	$S_1 \rightarrow S_0$	10 ⁻⁹ to 10 ⁻⁶
Phosphorescence	$T_1 \rightarrow S_0$	10 ⁻³ to 100
Non-Radiative Decay	$\begin{array}{c} S_1 \to S_0 \\ T_1 \to S_0 \end{array}$	10 ⁻⁷ to 10 ⁻⁵ 10 ⁻³ to 100

Image Source: DOI: 10.25593/opus4 - fau - 14844

Intersystem Crossing. Non-radiative transition between two isoenergetic vibrational levels belonging to electronic states of different spin multiplicity.

Vibrational Relaxation. Non-radiative transition to a lower vibrational level within the same electronic state. Internal Conversion. Non-radiative transition between two electronic states of the same spin multiplicity.

Time-Dependent Density Functional Theory (TDDFT)

Fundamental Concepts

DFT

Hohenberg-Kohn theorem 1 (one of two).

The external potential (and hence the total energy), is a unique functional of the electron density. The ground-state expectation value of any physical observable of a many-electrons system is a unique functional of the electron density n(r).

P. Hohenberg and W. Kohn, *Phys. Rev.* **136** B864 (1964)

 $\langle \psi_0 | \hat{O} | \psi_0 \rangle = O[n]$

 $\hat{H}\psi(\boldsymbol{r}_1,...,\boldsymbol{r}_N) = E\psi(\boldsymbol{r}_1,...,\boldsymbol{r}_N)$ Boundary value problem. Second-order differential equation

TDDFT Runge-Gross theorem.

The time-dependent external potential is a unique functional of the time-dependent electron

density. The expectation value of any physical time-dependent observable of a many-electrons system is a

unique functional of the *time-dependent* electron density $n(\mathbf{r},t)$ and of the initial state.

E. Runge and E.K.U. Gross, *Phys. Rev. Lett.* **52** 997 (1984)

 $\hat{H}\psi(\mathbf{r}_1,...,\mathbf{r}_N;t) = i\hbar \partial/\partial t \psi(\mathbf{r}_1,...,\mathbf{r}_N;t)$ $\langle \psi_0(t) | \hat{O} | \psi_0(t) \rangle = O[n(t), \psi_0](t)$ Initial value problem.

First-order differential equation (time)

Provides response under the influence of an external scalar potential $v_{\rm ext}(\mathbf{r},t)$ (ex. timedependent electric field).

For Your Information

Noteworthy Links

- 1) Computational Chemistry List CCL
- http://www.ccl.net/
- Running since 1991, the information stored in this mailing list/forum is unlimited.
- If you're serious about Computational Chemistry, you need to sign up today. All past messages are readily available and *searchable*.
- 2) ORCA Input Library
- https://sites.google.com/site/orcainputlibrary/
- This forum can be considered as the second ORCA manual. Simple and excellent.
- Does NOT replace the ORCA manual, much less technical, offers solutions to common problems.
- 3) Chemistry LibreTexts
- https://chem.libretexts.org/Bookshelves
- https://chem.libretexts.org/Courses
- An **excellent** and unlimited source of information, lectures and media content.

For Your Information

People to look up

- 1) Dr. Joaquin Barroso's Blog
- A treaty of special topics, with *many* solutions to several practical problems.
- https://joaquinbarroso.com/category/td-dft/
- 2) Prof. Neepa Maitra
- Go to person for TD-DFT formalism. Has posted several youtube video lectures from CECAM.
- Find her at Rutgers:
- https://sites.rutgers.edu/maitra-group/
- 3) Prof. Carsten A. Ullrich
- Follow his very interesting work on foundations of TDDFT and applications.
- https://ullrichc.mufaculty.umsystem.edu/
- 4) Prof. Denis Jacquemin
- Follow his very interesting work on TDDFT and applications.
- https://publons.com/researcher/1660859/denis-jacquemin/

