INTRODUCTION TO AI FOR LIFE SCIENCES

Dr. Anastasia Krithara

Institute of Informatics & Telecommunications
National Center for Scientific Research “Demokritos”



Al IN HEALTHCARE

 Digital technologies and Artificial Intelligence (AI) are
transforming medicine, medical research and public

health

« Use of Al technologies for health holds great promise
and has already contributed to important advances in
fields such as drug discovery, genomics, radiology,
pathology and prevention

« Al could improve the delivery of health care, such as
prevention, diagnosis and treatment of disease

 Already changing how health services are delivered in
several countries
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ROLE OF AI IN HEALTHCARE
DIAGNOSIS AND PERSONALISED TREATMENT

e Assess the relative risk of disease
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* Make faster, more accurate diagnoses

* Provide personalized treatments tailored to a person’s
genes, lifestyle and environment
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ROLE OF AT IN HEALTHCARE

CLINICAL CARE

* The evolving role of patient in clinical care
e The shift from hospital to home-based care

* Extend clinical care beyond the formal healthcare system




| ROLE OF AI IN HEALTHCARE
| | PUBLIC HEALTH AND PUBLIC HEALTH SURVEILLANCE

e Health promotion

* Disease prevention

* Surveillance and emergency preparedness

* Outbreak response




ROLE OF AT IN HEALTHCARE

HEALTH RESEARCH AND DRUG DEVELOPMENT

* Improve human understanding of disease

* Identify new disease biomarkers

* Labour-intensive to a capital- and data-intensive
drug discovery

* Accelerate the development of new medicines

* Improve the repurposing of existing medicines




ROLE OF AI IN HEALTHCARE
HEALTH SYSTEMS MANAGEMENT AND PLANNING

Optimization of the medical supply chain

* Identifying and eliminating fraud and waste 8

* Scheduling patients

* Optimize the allocation of health system
resources
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HEALTH DATA ANALYSIS

Interoperability

Large Data Technology with
Sets Human Touch

Data Security &
Patient Privacy
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Individual
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USE CASES

PRECISION MEDICINE

DRUG DISCOVERY
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USE CASES

PRECISION MEDICINE
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DATA INTEGRATION TOWARDS PRECISION MEDICINE

What is it?

“Identifying which approaches will be eftective for which patients based on genetic,

environmental, and lifestyle factors.”
NRC, NIH, US
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What can it do?

Patient-centered care: treating the person, not the disease
« Optimal therapies for individuals
« Avoid adverse drug reactions
« Reduce treatment costs
 Early detection of disease
« Better prognosis of disease progression

« Facilitate pro-active preventive medicine



EXAMPLES

Driver Mutations in non-small-cell lung cancers

Squamous cell carcinoma
Other

Adenocarcinoma
Other

ERBB2
FGFR

TP53 status
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Source: Hiley et al., The Lancet, 2016.

Wild type

RARE DISEASE

Mutations in Duchenne Muscular Dystrophy

Source: cureduchenne.org

Source: Magri et al, J. of Neurology, 2011.
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§ ] AS I S
Big Data for Precision Medicine

THE TASIS PARADIGM -

i B (e

_g. Lung Tumor Alzheimer’s disease | ¢ iASiS analyseS:

E snatare orus Response * EHRs (English & Spanish)

< Knowledge Graph Analysis 15
* MRI & PET/CT images

§ T » * Genomic data (e.g. liquid biopsy samples)

S -] . Knowledge

% ,'.%’. . Sesghi’ * Related bibliography (e.g. PubMed)

© @ ®

= ® oo * Biomedical databases (e.g. DrugBank)

k: . — * Biomedical ontologies (e.g. GO, UMLS)
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&iASIS

Big Data for Precision Medicine

ELECTRONIC HEALTH RECORDS: LUNG CANCER -

Notes and Reports « 1000 patients:
S — 251,730 clinical records
* Improved NLP :

— Event detection, UMLS, Drugs,
Negation detection

Comorbidity
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Performance
Status
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MEDICAL ITMAGES
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&iASIS

Big Data for Precision Medicine

100

300

400

17

100 200 300 400

Bounding volumes

S00

Predicted nodule



&iASIS

Big Data for Precision Medicine

OMICS DATA ANALYSIS
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&iASIS

Big Data for Precision Medicine

HEALTH LITERATURE -

Medline articles per year (in millions)
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http://dan.corlan.net/

&iASIS

Big Data for Precision Medicine

HEALTH LITERATURE -

Text
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being a leading cause of death. ...”

Ontological entity recognition (UMLYS)
(C1861172) 20
« Cessation of life (C0011065)

Relation Extraction
. ” CAUSES “Cessation of life”

CAUSES

Venous thromboembolism Cessation of life



&iASIS

Big Data for Precision Medicine

OPEN DATABASES -
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" BIRU[CIZYNNIA  “Fondaparinux” (C1098510) treats “Thromboembolism”

%lSEASE
NTOLOGY
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CAUSES
Thromboembolism

Venous Thromboembolism )
Cessation

of life

PREVENTS MAY PREVENT

Fondaparinux



THE INTEGRATED FRAMEWORK
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Management Analytics Decision

Extraction

Big Data

Health Precision
Pollcues Medicine
Lung Tumor Alzheimer’s disease
Signature Drug Response
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 Extracted knowledge is fused in the iASiS
knowledge graph

* Unified semantic schema
* Linked data
* Machine-processable knowledge

* jASiS end-users will be able to:
* Receive answers along with justifications

* |dentify patterns in patient populations
 Make more informed decisions

* All steps of data management and analytics

enforce privacy and access control

1ASIS

Big Data for Precision Medicine
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S1ASIS

Big Data for Precision Medicine

LUNG CANCER TREATMENT -
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LUNG CANCER: TOXICITIES

S

1ASIS

Big Data for Precision Medicine

« Exploring IASIS knowledge graph, we observed, with statistical significance, a difference

among the different chemotherapy schemes (figure A)

the combination with vinorelbine and cisplatin is the most effective one

the combination of vinorelbine and carboplatin is the most toxic one

« Drug-Drug Interactions (DDIs) with non-oncological drugs (figure B): Omeprazol, is

known to decrease the efficiency of several oncological treatments
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USE CASES

DRUG DISCOVERY
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ACCELERATING DRUG DISCOVERY WITH Al

Screening optimization

Combinatorial chemistry In-vitro & In-vivo Studies
Setting selection parameters Cellular disease model NDA applicat
Computational Screening Drug selectivity appiication
Chemical Screening Animal model Product launch

Biomolecular Lead Molecules

Clinical Trial

® o °

Targets
3 High-Throm_lghput " H E H Preclinical Regulating
Screening \ Bodies Approval

! A ! FDA
Cellular & génetic target Synthesis & isolation IND ap['JIication
Genomics Structural simplification Monitoring human safety
Proteomics Structure activity study Evaluates effectiveness
Bioinformatics Lead optimization

. . : Dose optimization
Disease mechanism Library development b
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USE CASES
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GENE THERAPIES

Gene therapies can work by several mechanisms:

* Replacing a disease-causing gene with a healthy copy of the gene

* Inactivating a disease-causing gene that is not functioning properly

* Introducing a new or modified gene into the body to help treat a
disease
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GENE THERAPIES

DNA -based therapies focus on changing or fixing the actual genes

29

RINA-based therapies work on the RNA, controlling how much
protein is made or preventing harmful proteins from being produced

Both DINA and RNA-based therapies are important tools in modern
medicine, offering different ways to treat genetic and other diseases!



CRISPR/CAS9

« Unique technology that enables researchers
to edit parts of the genome by altering
sections of the DINA sequence.

« Currently the simplest, most versatile and
precise method of genetic manipulation.

target sequence

DNA
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mutation

\\

Guide RNA binds
to target sequence

Cas9 enzyme binds
to guide RNA

Cas9 enzyme cuts
both strands of DNA

The cut is repaired
introducing mutation
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CRISPR-CAS9 GRNA EFFICIENCY PREDICTION MODELS

Dense Chromatin
(DNA inaccessible)

CRISPR/Cas9 protein

Open Chromatin
(DNA accessible)

On-target Site

Input information

Efficiency

1. Guide RNA sequence features
2. Genetic and epigenetic features
3. Energetics properties

Prediction/Evaluation

—  Alignment  |j—

In silico design

Guide RNAs
[ Empirical score f—g—» """
{ Machine learning |
Computational analysis Output

31



ETHICAL PRINCIPLES FOR Al USE IN HEALTH

- Assessing whether Al should be used

« Data collection and use
+ Responsibility and Accountability for decision-making with Al
32

- Bias and discrimination associated with Al

- Risks of Al technologies to safety and cybersecurity

ETHICS AND GOVERNANCE OF ARTIFICIAL INTELLIGENCE FOR HEALTH, WHO GUIDANCE, 2021



THANK YOU
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