
Intro to Machine Learning 
and Deep Learning

Christos Kozanitis, FORTH

kozanitis@ics.forth.gr



What is ML?

• Practical definition
• Label assignment to data

• Broad field
• Computer Science

• Probability + Statistics

• Optimization

• Linear Algebra



Some examples

• Face recognition

• Link prediction

• Text classification (e.g. 
spam detection)

• Games (e.g. Backgamon)

• Chat



Terminology

• Observations: Items or entities used for learning or evaluation
• E.g. emails

• Features: Attributes (usually numeric) used to represent observations
• E.g. Length, date, presence of keywords

• Labels: Values/categories assigned to an observation
• E.g. spam/not spam

• Training and Test Data: Observations used to train and evaluate a 
learning algorithm (e.g. a set of emails + labels).
• Training data is given to the algorithm from training
• Test data is withheld at train time.



Different learning approaches

• Supervised: Learning from labeled observations
• Labels teach algorithm to learn mapping from training dataset

• Unsupervised: Learning from unlabeled observations
• Learning algorithm must find underlying structure from features alone 

• Can be a goal from itself (discover hidden patterns, explore data)

• Part of preprocessing (e.g. feature extraction) of a supervised algorithm



Examples of supervised learning

• Regression: Predict a real value for each item (e.g. stock prices)
• Labels are continuous

• Classification: Assign a category to each item (e.g. spam/not spam)
• Categories are discrete



Examples of unsupervised learning

• Clustering: Partition observations into homogeneous regions
• E.g. identify similar images

• Dimensionality reduction: Transform an initial set of features into a 
more concise representation
• E.g. visualization



A typical supervised ML pipeline
Obtain Raw Data

Features

Model training

Model Evaluation

Predictions

Crucial step

We want numeric 
features

Data without label



A toy Machine Learning problem: Predict 
people heights from their shoe sizes

Shoe size

Height

observations

• X: features (shoe size)
• Y: Labels (height)

• Model hypothesis: 

• Learning Goal: Find proper w0, w1 

model



How to learn w0, w1

• Need a loss function to minimize and a learning algorithm

• Learning algorithms:
• Algebraic solutions (accurate, but slow)

• Gradient descent (linear with data dimensions)



Moving to more complex problems: How 
about non linear relationships?

• Problem: Recognize that an image contains a car
• Input: A set of images (arrays of pixels)
• Output: 0/1



How would we classify images of cars?

Choose two pixels and plot 
them for each image of the 
dataset

Pixel2

P
i
x
e
l
1

No Car

Car

Pixel 2



Possible way of introducing non linearity to 
linear models: quadratic transformations

• Get all pairwise multiplications

• Remove redundant pairs

• Linear models now connect labels with the quadratic transformations 
of features => non linear relation with features themselves.



Revisiting car classification

Strategy: Choose two pixels 
and plot them for each 
image of the dataset

Pixel2

P
i
x
e
l
1

No Car

Car

• What if we use ALL pixels?
• 50x50 => d=2500 pixels 

(grayscale)
• d=7500 pixels RGB

• Quadratic features: ~3M



Summary

• Linear models + complex non linear hypothesis:
• Need quadratic or cubic features

• Feature numbers explode

• Models => trainable parameters explode + overfitting danger

• Training => takes a lot of time

• Alternative solution: Neural Networks
• Pass non linearity from features to the model



w3

w2

w1

Neuron unit: A function of the dot product of 
the input with weight vectors
• If x0 present: Always 1

• Bias unit

x1

x2

x3

hw(x)
activation function
(sigmoid, relu, softmax, 
tanh, others)



Neural Network: A grouping of neuron units

x1

x2

x3

hw(x)

Layer 1
(Input x)

Layer 2
(hidden)

Layer 3
(Output y)



What is the big deal about NNs?

• NNs learn their own features

x1

x2

x3

hw(x)

• hw(x): simple logistic regression

• Features: a not x

• The network learns a in the 
previous layer



Formalizing our problem

• Training set: Labelled images (car, not a car)

• (x(1), y(1)), (x(2), y(2)), …, (x(m), y(m))

• x: A vector of pixels

• y: 0/1



Model setup: Predict the probability that an 
image is a car

hw(x)

Every edge contains a 
trainable parameter!



In order to train

• Cost function that learnable parameters will minimize:
• Logistic loss

• Algorithm
• Gradient descent family



How training proceeds

• Forward propagation to compute output as a function of input

• Loss evaluation

• Backward propagation to calculate gradients

• Weight update



Forward Propagation: Vectorized 
implementation

• How do we compute the output?
x1

x2

x3

hw(x)

z(2)=W(1)x
a(2)=σ(z(2))

Add a0
(2)=1

z(3)=W(2) a(2)

a(3)=σ(z(3))

z1
(2)

z2
(2)

z3
(2)

a(1)

Fwd
propagation



Backward propagation

• Starting from the final layer: 
• compute the cost by comparing output with true label

• Moving to every layer from right to left:
• Compute the partial derivative of the cost function J(W) for every weight at 

every layer

• Involves multiple vector-vector products



Where to run? How to code?



The entire process is too slow

• A lot of matrix multiplications

• Scale out to make computations fast? Not really working.
• If every Android user wants to translate 3 min audio every day => Google 

needs to double its datacenter.

• We cannot avoid Scale Up computation (GPUs, TPU etc)

• How do we program this? Do we need to learn CUDA?


	Slide 1: Intro to Machine Learning and Deep Learning
	Slide 2: What is ML?
	Slide 3: Some examples 
	Slide 4: Terminology
	Slide 5: Different learning approaches
	Slide 6: Examples of supervised learning
	Slide 7: Examples of unsupervised learning
	Slide 8: A typical supervised ML pipeline
	Slide 9: A toy Machine Learning problem: Predict people heights from their shoe sizes
	Slide 10: How to learn w0, w1
	Slide 11: Moving to more complex problems: How about non linear relationships?
	Slide 12: How would we classify images of cars?
	Slide 13: Possible way of introducing non linearity to linear models: quadratic transformations
	Slide 14: Revisiting car classification
	Slide 15: Summary
	Slide 16: Neuron unit: A function of the dot product of the input with weight vectors
	Slide 17: Neural Network: A grouping of neuron units
	Slide 18: What is the big deal about NNs?
	Slide 19: Formalizing our problem
	Slide 20: Model setup: Predict the probability that an image is a car
	Slide 21: In order to train
	Slide 22: How training proceeds
	Slide 23: Forward Propagation: Vectorized implementation
	Slide 24: Backward propagation
	Slide 25: Where to run? How to code?
	Slide 26: The entire process is too slow

