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Scope

Introduction to evolutionary algorithms and how to make them attractive for real-world
applications

We will talk about:
➢Population-based stochastic-based optimization methods

▪ “Generalized” Evolutionary Algorithm (EA)
▪ Encoding, evolution operators

➢Cost reduction techniques in EAs
➢ Industrial applications
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Constrained Optimization: Problem Statement

N design (optimization) variables
Mo objectives
Mc constraints

In practice: To compute fi or cj, calls to the evaluation software (eval.exe) is needed.
The computational cost of such an evaluation is the time-unit used to measure the cost of
the optimization run as a whole.
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min Ԧ𝐹(𝑏) = min 𝑓1(𝑏), … , 𝑓𝑀𝑜
(𝑏)

subject to 𝑐𝑗(𝑏) ≤ 0, j = 1,𝑀𝑐

𝑏 ∈ ℝ𝑁

Optimization Cost = # calls to the 
evaluation s/w

* Cost per evaluation s/w 
(=time-unit)
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Part 1:
Population-based Stochastic-based Optimization 

Methods for Beginners –
A Generalized Evolutionary Algorithm
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Terminology  - Minimization or maximization, etc.
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max CL

min CD

min -CL

min CD

min 1/CL

min CD

max CL

max -CD

min CD+ w/CL min CD+ 1/CL min CD+ 10/CL

min CD

constrained by:  CL=1.2
min CD

constrained by :  CL>1.2

Objective Function
Fitness Function (if maximization)
Cost Function (if minimization)
Mo =1→ Single-Objective Optimization (SOO)
Mo >1→Multi-Objective Optimization (MOO)
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Very simple example of an EA with 6 parents & 6 offspring (SOO)
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L

xA xB

yA

yB

θΑ

Β

N=6   degrees of freedom (DOFs), design or optimization variables.
Objective (cost) function: min. (drag)

Evaluation s/w: a CFD solver
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The evaluation S/W (eval.exe)
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L xA xByA yB θ

b1=…b  =

F=CD=…

b2=… b3=… b4=… b5=… b6=…

No access to the source code is needed!!!

eval.exe
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Start by λ randomly 
selected offspring.

(All these bn values have been 
selected at random between 
known the lower and upper 

bounds of each design variable)

Very simple example of a (μ,λ)EA with μ=6 parents & λ=6 offspring (SOO)
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Very simple example of a (μ,λ)EA with μ=6 parents & λ=6 offspring (SOO)
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F=0.29

F=0.36

F=0.45

F=0.50

F=0.42

F=0.33

Evaluation of the current 
offspring population. Cost: 

λ=6 calls to eval.exe.
F=CD (to be minimized)

(Concurrent runs on a multi-
processor system is possible)
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F=0.29

F=0.36

F=0.45 F=0.42

F=0.33

F=0.29

Parent selection (λ 
evaluated offspring→μ

parents).
(This a absolutely simple and, 

thus, non-well performing, way 
of selecting parents)

(It is just by chance that, here, 
μ=λ)

Very simple example of a (μ,λ)EA with μ=6 parents & λ=6 offspring (SOO)
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Crossover (Recombination)

Two Parents

Two (tentative) Offspring

Application of evolution 
operators on the parent 

population.
(Based on a Random Number 

Generator or RNG)
(Using 2 parents to create 2 

offspring is not necessarily the 
best option)

Very simple example of a (μ,λ)EA with μ=6 parents & λ=6 offspring (SOO)
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Mutation

Tentative Offspring

Offspring

Application of evolution 
operators on the parent 

population.

+ Elitism!

Very simple example of a (μ,λ)EA with μ=6 parents & λ=6 offspring (SOO)
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The new offspring 
population (λ individuals).

Converged or repeat the 
same steps?

Very simple example of a (μ,λ)EA with μ=6 parents & λ=6 offspring (SOO)
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Other Stochastic Population-based Optimization Methods
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◆ Genetic Algorithms (GA) & Evolution Strategies (ES)
◆ Particle Swarm Optimization (PSO)
◆ Ant-Colonies Optimization (ACO)
◆ Pity Beetle Algorithm
◆ Chicken Swarm Optimization (CSO)
◆ Harmony Search
◆ …

This presentation is based on a “Generalized” Evolutionary Algorithm (EA), among other bridging
the gap between GA and ES.

The (μ,λ)EA, with μ parents and λ offspring, supporting both binary and real coding of the design
variables.
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Flowchart of the (μ,λ)EA in a SOO Problem
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Initialize λ offspring

Evaluate λ offspring

Apply Mutation

Elitism

New λ offspring

Select μ parents

Mate μ parents & Crossover

… λ calls to eval.exe,
amenable though to parallelization
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Flowchart of the (μ,λ)EA in a ΜOO Problem
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Initialize λ offspring

Evaluate λ offspring

Apply Mutation

Elitism

New λ offspring

Select μ parents

Mate μ parents & Crossover

First transform vector (F1,…, FMo) to a 
scalar utility function Φ and, then, 
select μ parents based on Φ values
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Pareto Front of Front of Non-Dominated Solutions

17

Bugatti Veyron 
€1100000 
400 km/h 

Simca 1100
€2000 
60 km/h 

VW Golf 
€25000 
220 km/h

(Top Speed)-1

Price All the solutions in the Pareto front are said to 
be non-dominated in the sense that, in the 
Pareto front, there is no solution that is better 
than any other, w.r.t. objectives. Min. F1

Min. F2

F1

F2
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Pareto Front of Front of Non-Dominated Solutions - Compare
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F1

F2

F1

F2

To improve one objective will imply 
to introduce a loss regarding the 

other ones.

The yellow solution is 
dominated by the green one.

Min. F1

Min. F2
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A way to compare Fronts of Non-dominated Solutions in MOO
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Definition of the Hypervolume Indicator
(for min. f1 & min. f2).

Hypervolume
Indicator

Non-Dominated 
Area
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Constraint Handling in EAs

Exponential penalty if

Death penalty if

(* minimization problem)
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𝑓𝑚 (𝑏) ← 𝑓𝑚(𝑏) + ς
𝑗=1
𝑀𝑐 exp 𝑎𝑗

𝑐𝑗

𝑐𝑗
𝑟𝑒𝑙𝑎𝑥

0 < 𝑐𝑗 𝑏 < 𝑐𝑗
𝑟𝑒𝑙𝑎𝑥

𝑐𝑗 𝑏 > 𝑐𝑗
𝑟𝑒𝑙𝑎𝑥

𝑚 ∈ [1,𝑀𝑜]
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In EAs, two main abilities maintained which are Exploration and Exploitation.

Exploration means that the algorithm searches for new solutions in new regions.

Exploitation means that the algorithm uses already existing solution(s) and makes refinement to it
(them )so as to improve its (their) fitness.

EAs: Exploration vs. Exploitation

21
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Stochastic, Population-Based Optimization Methods. Pros & Cons

Pros:
● Readily accommodate any analysis-evaluation software (as a black-box), to compute the cost or

fitness function value(s) of candidate solutions.
● Gradient-free search.
● Compute (Pareto) front of non-dominated solutions, in many-objective optimization, via a single

run.
● Handle constraints in the simplest possible way: through penalties.
● Are amenable to parallelization (simultaneous independent evaluations).

Cons:
● Require a great number of (costly/CFD) evaluations: many calls to eval.exe!

22
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All theory and computations presented below are based on the s/w EASY developed by the
PCOpt/NTUA, using a (μ,λ)EA as the background optimization method.

The Evolutionary Algorithm SYstem
http://velos0.ltt.mech.ntua.gr/EASY
http://147.102.55.162/EASY

The PCOpt/NTUA EA: The EASY Platform
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Part 2:
Population-based Stochastic-based Optimization 

Methods for Beginners –
Evolution Operators

mailto:vasouti@fossgp.com


vasouti@mail.ntua.gr

Dr. Varvara G. Asouti, vasouti@mail.ntua.gr

Parallel CFD & Optimization Unit, School of Mechanical Engineering, NTUA (PCOpt/NTUA)

Notations – Key Terms

Notations:
μ = parent population size
λ = offspring population size
e = elite population size
g = generation index
ρ = number of parents to form an offspring

25

𝑃𝜇
𝑔

, 𝑃𝜆
𝑔

, 𝑃𝑒
𝑔

Key Terms:
Individual: Candidate solution
Genes: parameters (design variables) characterizing an individual
Chromosome (genotype): the set of genes of an individual

mailto:vasouti@fossgp.com


vasouti@mail.ntua.gr

Dr. Varvara G. Asouti, vasouti@mail.ntua.gr

Parallel CFD & Optimization Unit, School of Mechanical Engineering, NTUA (PCOpt/NTUA)

Offspring 

Population 𝑷𝝀
𝒈

Flowchart of a standard Evolutionary Algorithm
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Start
Initialize 

Population g=0

Parent Population 

𝑷𝝁
𝒈

Evolution Operators 
& Elitism

Crossover & Mutation 
Operators

g=g+1

λ evaluations

Elite Archival 

Population 𝑷𝒆
𝒈

EA 
stopping 
criteria

End

Database

YES

NO
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Parent Selection & Elitism (1/2)

Linear Ranking: 𝑃𝜇
𝑔−1

∪ 𝑃𝜆
𝑔

individuals are sorted based on their fitness value. The
probability of selecting an individual is based on its rank in a linear manner, i.e.
practically the μ best members are selected.

Proportional Selection: 𝑃𝜇
𝑔−1

∪ 𝑃𝜆
𝑔

individuals are associated with a probability
based on their fitness value (smaller values correspond to higher selection
probability). Form a roulette wheel where each individual is associated with a slot
with angular width proportional to its selection probability, and turn it μ times.

27

𝑃𝜇
𝑔
← (𝑃𝜇

𝑔−1
∪ 𝑃𝜆

𝑔
)

μ
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Parent Selection & Elitism (2/2)

Tournament Selection: Randomly select k individuals from 𝑃𝜇
𝑔−1

∪ 𝑃𝜆
𝑔

and sort them based on
their fitness value. Select the best among them with a probability p, the second best with p(1-p)
and so on and so forth. Repeat this procedure μ times.
k: tournament size
p: tournament probability

Elitism:

Replace the worst members of 𝑃𝜆
𝑔

with a few elite individuals from 𝑃𝑒
𝑔
→

Practically increase the probability of an elite member to be selected as parent.

28

k=3

p=0.8

80% for the blue, 16% for the orange and
4% for the grey to be selected as parent
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Chromosome representation

Real encoding: Chromosomes are strings of real values, e.g. [3.45 , 5.12 , -7.68 , 9.32 , 4.77]

Binary encoding: Chromosomes are strings of 0s and 1s , e.g. [0110100111010100110]

Gray of reflected binary encoding: ordered binary encoding such that two successive integer values
differ in only one bit/binary digit. Why?

29

Decimal Binary Gray
3 0011 0010
4 0100 0110

Decimal Binary
3 0011
4 0100
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Binary Encoding Crossover

▪ One-point crossover
▪ Two-point crossover
▪ One- or two-point crossover per

(design) variable
▪ etc.

30

One-point crossover 
with ρ=3 parents

Two-point crossover 
with ρ=2 parents
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Real Encoding Crossover

▪ One- or two-point crossover
▪ Discrete
▪ Intermediate
▪ Simulated binary
▪ etc.

31

One-point crossover with ρ=2 parents Discrete crossover with ρ=3 parents

𝜷 =

𝟐𝒖 Τ𝟏 (𝒏+𝟏) , 𝒖 < 𝟎. 𝟓

𝟏

𝟐(𝟏 − 𝒖)

Τ𝟏 (𝒏+𝟏)

, 𝒖 ≥ 𝟎. 𝟓
𝑏 = 1 + 𝛽 𝑏𝑃1 + (1 − 𝛽) 𝑏𝑃2

𝒖 ∈ 𝟎, 𝟏 , 𝐧 ∈ [𝟏, 𝑵]Simulated Binary Crossover (SBX)
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Mutation

Binary/Gray encoding:

Real encoding:

D: depends on the current generation and the maximum generations

32

𝑏 = ቐ
𝑏 + 𝐷 𝑔, 𝑏𝑚𝑎𝑥 − 𝑏 , 𝑟 > 0.5

𝑏 − 𝐷 𝑔, 𝑏 − 𝑏𝑚𝑖𝑛 , 𝑟 ≤ 0.5
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Computing Φ in MOO problems - Front Ranking (1/5)

F2

F1
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Computing Φ in MOO problems - Front Ranking (2/5)

F2

F1
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Computing Φ in MOO problems - Front Ranking (3/5)

F2

F1
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Computing Φ in MOO problems - Front Ranking (4/5)

F2

F1
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Computing Φ in MOO problems - Front Ranking (5/5)

F2

F1
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Computing Φ in MOO problems - NSGA
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i

j

σshare

σshare

d(i,j)

1dummyf =

F2

F1

_dummy prev frontf f e= +
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Part 3:
Cost Reduction in EAs
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Possible ways to Reduce the Computational Cost of EAs

◆ Use Metamodels (or Surrogate Evaluation Models) to reduce the number of calls to the
expensive Problem Specific Model (PSM) (CFD, MD, etc. s/w) → Metamodel-Assisted EAs
(MAEAs).

◆ Perform Distributed search→ Distributed EAs or DEAs or DMAEAs.

◆ Consider Dimensionality Reduction to overcome the «curse of dimensionality»→PCA-driven
EAs or MAEAs.

◆ Perform Hierarchical or Multilevel search→ Hierarchical EAs (HEAs or HMAEAs).

◆ Hybridize EAs with Gradient-based optimization→ Hybrid Optimization.

◆ Overcome the generation synchronization barrier→ Asynchronous EAs.

40
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Metamodel-Assisted EAs (MAEAs) – The Concept

Having already evaluated a number of candidate solutions (individuals), build a model-agnostic
black-box (metamodel or surrogate evaluation model) to approximate the objective or constraint
function values of new individuals generated by the EA and avoid the use of the costly PSM tool, as
much as possible.

Valid for both Single- & Multi-Objective Optimization (SOO & MOO)

Questions:
● When and how to train the metamodel(s)?
● Which metamodel (polynomial regression, neural networks, …)?
● How to collect training samples for the metamodel?
● How to use the cost/fitness function approximation provided by the metamodel?

41
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MAEAs: Ways to Implement Metamodels

MAEAs with Off-Line Trained Metamodels:
● A Design of Experiment (DoE) technique is used to sample the design space, collect training

patterns, evaluate them on the PSM & store them into the Database (DB).
● A global metamodel is trained and the EA search relies exclusively upon its use.
● “Optimal” solution(s) is/are re-evaluated on the PSM (e.g. the CFD code).
● If necessary, new samples are collected & evaluated on the PSM, DB is enriched, a new

(hopefully, better) metamodel is trained.
● Iterate (successive EA-based searches) until convergence.

MAEAs with On-Line Trained Metamodels:
● Local metamodels are trained during the evolution by on-line collected training patterns.

The Low-Cost Pre-Evaluation (LCPE) phase.
● Coordinated use of metamodels and the PSM.
● Considered to be the distinguishing feature of .

42
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A MAEA with Off-Line Trained Metamodels

43
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A MAEA with On-Line Trained Metamodels

44
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A MAEA with On-Line Trained Metamodels

45

Phase 1:
Exclusive use of the PSM; no use of metamodels
Terminates once TMM evaluated individuals are stored in
the DB.

Phase 2 (Low Cost Pre-Evaluation):
Evolution using metamodels and, only selectively, the
PSM.
● All population members are evaluated on local/ personalized

metamodels trained on neighboring data previously stored
in the DB.

● The best λe(«λ, λe,min≤ λe≤ λe,max) of them are re-evaluated on
the PSM & stored in the DB; this determines the
computational cost of each generation.
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A MAEA with On-Line Trained Metamodels – The LCPE Phase at a glance
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Generation 1
λ PSM Evaluations

Generation 2
λ PSM Evaluations Generation 3

λ PSM Evaluations

Generation 4
λe PSM Evaluations

Generation 5
λe PSM EvaluationsGeneration 6

λe PSM Evaluations

LCPE starts here!

 Int. Review Journal Progress in Aerospace Sciences, 38:43-76, 2002. 
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On Metamodels (Radial Basis Function-RBF Networks)

Unless otherwise stated, used in all presented studies.

47

RBF network with N inputs, 
K hidden units (RBF centers) and 

a single output (Mo=1).
To be trained with T training patterns.

Possible activation functions:

etc.

Training:

Solution of a linear/symmetric system. Interpolation (K=T) or Approximation (K<T).
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Constrained Optimization in MAEA – Support Vector Machines (SVM)

Infeasible population members, penalized with an (+/-) infinite F value, should not be used as
training patterns for the metamodel, but, on the other hand, the MAEA should take them into
account. A special treatment is needed.

48

Proposed Treatment: A trained SVM classifies new individuals
as “feasible” or “infeasible”:

● RBF is used only for individuals marked as “feasible”.
● Individuals marked as “infeasible” are penalized without
resorting to the metamodel.

infeasible

feasible
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Other Metamodels - Kriging

Gaussian processes (Kriging) estimate and use (as an extra criterion) the Confidence Interval,
pertinent to the guessed value of the objective or constraint function.

49

 IEEE Transactions on Evolutionary Computation, 10:421-439, 2006.
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Distributed EAs and MAEAs
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Run more than one EAs, with different populations
evolving in semi-isolation: by regularly exchanging
promising etc individuals.

User-Defined Parameters:
● Number of demes or islands
● Communication topology
● Communication frequency
● Migration policy
● EA set-up per deme; exploration/exploitation
oriented demes!

Common DB for all demes.

 International Journal for Numerical Methods in Fluids, 53:455-469, 2007.
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Demo Case A (SOO)
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Shape optimization (ShpO) of an isolated airfoil.
Target: max. Lift (CL).
Inviscid flow: Minf=0.40, ainf=5o.
Constraints: Lower and upper bounds of the design variables.
Unstructured grid, ~20K nodes.
Parameterization: 2 Bezier curves (8 Control Points each).
N=12 DoFs (internal control points moving in the y-direction).
PSM: The PCOpt/NTUA GPU-enabled flow solver (PUMA).
Cost per evaluation: ~ 5 sec. on one NVIDIA K20 GPU.
Basis of Comparison: a (20,40)EA.
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Demo Case A (SOO)
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Starting

Optimal

(20,40) EA

(20,40) MAEA, TMM=40, λe=3

DEA or DMAEA: two demes (10,20)
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Demo Case B (MOO)
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Shape optimization of an isolated wing (two objectives)
Target: max. Lift (L) and min. Drag (D)
Inviscid flow: Minf=0.8394, apitch,inf=3.06o, ayaw,inf=0o.
Constraints: Lower and upper bounds of the design variables.
Unstructured grid, ~1.33Mi nodes.
Parameterization: 6x3x3 Volumetric NURBS Control Grid.
N=24 DoFs (internal control points moving normal to the planform).
PSM: The PCOpt/NTUA GPU-enabled flow solver (PUMA).
Cost per evaluation: ~ 2 min. on one NVIDIA P100 GPU.
Basis of Comparison: a (10,20)EA.
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Demo Case B (MOO)
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TMM =30 evaluations on the PSM, before starting the LCPE phase.
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Demo Case B (MOO)
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(MA)EAs & the Curse of Dimensionality
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➢ The evolution slows down in the presence of many design variables.
➢ In MAEAs building a dependable metamodel is difficult. Need for many training patterns.

Consequently:
o The cost for training metamodel(s) increases a lot.
o The start of the LCPE phase must be delayed.
o The quality of metamodel-based predictions is not as good as it should.

Remedy (in each and every generation of the MAEA):
➢Perform the Principal Component Analysis (Kernel PCA) of the λ members of the current offspring

population, and compute the eigenvectors (which are the principal components defining the feature
space) and the eigenvalues (their variances).

➢Perform the evolution in the so-computed feature space, and enjoy the benefits of running a “more
separable” optimization problem.

➢ Train metamodels using a small number of the most important principal components (less input
units) using truncation.
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D/MA/EA-PCA: Demo Case B (Revisited)
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ShpO of an isolated wing
Target: max. Lift (L) and min. Drag (D)
New conditions: Minf=0.8395,
apitch,inf=3.06o, ayaw,inf=0o.
N=24 DoFs
Basis of Comparison: a (10,20)EA.
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Demo Case C (SOO)
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SOO & MOO of the NACA4318 isolated airfoil. 

M∞=0.13, α∞ =2.2o, Re=3.8 × 106. 

Controlled by the 8×5 control box. N=32 DoFs.

Unstructured grid with ∼30K nodes.
Targets: CL & CD. Weighted sum in the SOO.
PSM: The PCOpt/NTUA GPU-enabled flow solver (PUMA).
Basis of Comparison: a (10,30)EA.
Cost per evaluation: ~ 1 min. on one NVIDIA A100 GPU.
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Demo Case C (SOO)

59

mailto:vasouti@fossgp.com


vasouti@mail.ntua.gr

Dr. Varvara G. Asouti, vasouti@mail.ntua.gr

Parallel CFD & Optimization Unit, School of Mechanical Engineering, NTUA (PCOpt/NTUA)

Demo Case C (SOO)
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Reference shape         Optimized for min. CD Optimized for max. CL
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Hierarchical/Multilevel Schemes
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Integral Method or
Coarse Grid NS, etc

Navier-Stokes
Turbulence Model
Fine Grid, etc.

Hierarchical Evaluation

EA or MAEA

GBM

Hierarchical Search

Knot 
Refinement

Knot 
Removal

Finer Design 
Many Control 
Points

Rough Design -
Few Control 
Points

Hierarchical Parameterization
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Asynchronous EAs and MAEAs
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Main Concept:
▪ Maximum exploitation of all available computational resources (processors)
▪ Remove the generation barrier
▪ Once a processor becomes idle, a new offspring is generated on-the-fly and its evaluation is

assigned to this processor.

What about metamodels and Asynchronous EAs?
▪ Instead of generating a single new member to be evaluated, a few trial members are generated.

For each trial member, a local metamodel is trained. The most promising new individual among
the trial ones, according to the metamodel (used separately for all of them), is send to the idle
processor.

Engineering Optimization, 41:241-257, 2009.
Genetic Programming and Evolvable Machines, 10:373:389, 2009.
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Part 4:
Industrial Applications
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Optimization of an Aircraft Wing-Body Configuration
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Re-design of the wing of an aircraft wing-body configuration,
for max. CL and min. CD.

Turbulent flow: Rec=106, Minf=0.75, ainf=0o.

Customized parametrization: 8 design variables related to the wing planform 
(top) & the wing dihedral angles at the leading & training edges (bottom).

These 8 design variables affect, in turn, 
the coordinates of some of the nodes of a 

3x5x4 NURBS control grid which 
undertakes the internal grid adaptation.
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Optimization of an Aircraft Wing-Body Configuration
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Comparison of the averaged convergence histories for three RNG seeds of the (5,10) EA and MAEA, in terms of the 
number of CFD evaluations (PSM Calls). The LCPE phase starts after the first TMM=20 calls to the PSM and the λe=4 

most "promising" individuals are re-evaluated in each generation. Stopping criterion = 200 CFD evaluations.
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Optimization of an Aircraft Wing-Body Configuration
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Comparison of the convergence histories 
(expressed by the hypervolume indicator) of 
the MAEA and M(K)AEA(K), in terms of the 

number of CFD evaluations (PSM Calls).

Comparison of the fronts of non-dominated 
solutions computed by the MAEA and 
M(K)AEA(K) (right). The M(K)AEA(K) 

computed an improved front, due to the 
wide spreading of the optimal solutions.
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Optimization of an Aircraft Wing-Body Configuration
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Comparison of  pressure distributions for different wing shapes: baseline configuration (left), max. CL

configuration (center) and min. CD configuration (right).

Comparison of  the baseline configuration (in grey) and the max. CL (in red) and min. CD (in blue) ones.
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Shape Optimization of a Francis Runner
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● Design of the Francis runner, at 3 operating points with two objectives: (a) exit velocity profiles’ quality and
(b) uniformity of the blade loading. Two constraints (head and cavitation). There are 372 DoFs, in total!
● Comparison of fronts of non-dominated solutions obtained at the same number of evaluations on the PSM
(same CPU cost).
● Due to the extremely high problem dimension, the use of M(L)AEA(L) becomes absolutely necessary!
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Shape Optimization of a Hydraulic Turbine
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➢ Objective:  

the amplitude of the pressure field computed along a circumference 
located at the area between the guide vane and the runner)

➢ Constraints:

▪ Head  (deviation from rated head less than 1.5%)

▪ Efficiency (greater than that of the baseline)

▪ Cavitation free (constraint on the min. pressure on the runner 
surface)

➢ Only the runner blade is altered during the optimization. This is 
controlled by a 11×3×5 volumetric NURBS lattice, with 180 design 
variables.

Turbine with: 
• 21 stay vanes
• 21 guide vanes
• 9 runner blades 
• draft tube

𝒇𝑴 = 𝒑𝒎𝒂𝒙 − 𝒑𝒎𝒊𝒏
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Shape Optimization of a Hydraulic Turbine
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➢ (μ, λ) = (10,18) MAEA:

▪ TMM = 50 entries in the DB before activating the LCPE.

▪ 𝝀𝒆 ∈ [𝟐, 𝟒] re-evaluated individuals.

▪ PCA activated after the 2nd generation.

▪ Metamodels use 40 inputs (40 first principal components, 
truncated after PCA).

➢ Computational budget: 150 CFD evaluations.

➢ PSM: The PCOpt/NTUA GPU-enabled flow solver (PUMA).

➢ Computational platform: A singe node with 4 x A100 NVIDIA GPUs.
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Shape Optimization of a Hydraulic Turbine
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➢ ~43% reduction in 𝒇𝑴

➢ Constraints satisfied

Comparison of the convergence histories of the EA and
the PCA-driven MAEA. The objective function value is
non-dimensionalized with that of the baseline geometry.

View of the baseline and optimized runner blade.

Shroud

HubLe
ad

in
g 

Ed
ge

Tr
ai

lin
g 

Ed
ge

mailto:vasouti@fossgp.com


vasouti@mail.ntua.gr

Dr. Varvara G. Asouti, vasouti@mail.ntua.gr

Parallel CFD & Optimization Unit, School of Mechanical Engineering, NTUA (PCOpt/NTUA)

Overview – Comments 

➢The CFD-based constrained optimization of real-world industrial problems is computationally
demanding by itself.

➢Optimization turnaround time can be reduced thanks to the use of surrogate evaluation models
(metamodels) and dimensionality reduction (such as through the PCA).

➢Metamodels can also be used in distributed search, hierarchical schemes, asynchronous
algorithms etc. The gain offered by using metamodels is superimposed to that of the other
techniques.
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