

An introduction to adjoint methods and the shape and topology optimization workflow of OpenFOAM for CFD-based optimization

Dr. Evangelos (Vaggelis) Papoutsis-Kiachagias

Senior Researcher, NTUA

School of Mechanical Engineering, NTUA, Parallel CFD & Optimization Unit email: vpapout@mail.ntua.gr

What is Gradient-based Optimization?

Optimization Methods in CFD: Improve the performance of an aerodynamic shape

Quantity describing the performance:

The objective function J (e.g. drag force exerted on a car) \rightarrow computed through CFD

How are going to affect the objective function?:

By changing the values of the so-called design variables, \vec{b} . For instance, control points affecting the shape of the car

How are we going to update the values of the design variables?:

Gradient-free Methods: Require only the computation J. See the flow solver (or any evaluation tool) as a black box

EURO Greece

Gradient-based Methods:

How can $dJ/d\vec{b}$ be computed?

The simplest way \rightarrow Finite Differences

- Does not require the development of any additional s/w.
 Relies only on the flow solver
- × Its cost scales with the number of design variables N
- × Sensitive to the choice of the ε step

The hard way \rightarrow The adjoint method

- Requires a new mathematical development and programming if the flow problem or the objective function changes
- Has a cost that is independent of the number of the design variables. Ideal for expensive industrial problems with many design variables
- ✓ All components of $dJ/d\vec{b}$ are computed at the cost of only an additional set of PDEs → the adjoint equations

$$\frac{dJ}{db_i} = \frac{J(b_i + \varepsilon) - J(b_i)}{\varepsilon}$$

Courses at Mech. Eng., NTUA:

- Undergrad course: Optimization Methods
- Computational Mechanics MsC : Gradientbased and gradient-free optimization methods and applications

Review paper:

https://doi.org/10.1007/s11831-014-9141-9

EURC Greece

EURO Greece

The flow and adjoint PDEs

$$\begin{array}{l} \text{Continuity} \quad R^{p} = \frac{\partial v_{j}}{\partial x_{j}} = 0 \\ \text{Momentum} \quad R^{v}_{i} = v_{j} \frac{\partial v_{i}}{\partial x_{j}} + \frac{\partial p}{\partial x_{i}} - \frac{\partial \tau_{ij}}{\partial x_{j}} = 0 \ , \quad i = 1, 2, 3 \\ \text{Spalart-Allmaras} \quad R^{\widetilde{\nu}} = v_{j} \frac{\partial \widetilde{\nu}}{\partial x_{j}} - \frac{\partial}{\partial x_{j}} \left(\frac{(\nu + \widetilde{\nu})}{\sigma} \frac{\partial \widetilde{\nu}}{\partial x_{j}} \right) - \frac{c_{b2}}{\sigma} \left(\frac{\partial \widetilde{\nu}}{\partial x_{j}} \right)^{2} + \widetilde{\nu} \left(D\left(\widetilde{\nu}, y\right) - P\left(\widetilde{\nu}, y\right) \right) = 0 \\ \end{array}$$

The adjoint PDEs

The flow PDEs

Adjoint Continuity

Adjoint Momentum

Adjoint Spalart-Allmaras

$$\begin{split} R^{q} &= \frac{\partial u_{i}}{\partial x_{i}} = 0 \\ R^{u}_{i} &= -\frac{\partial (v_{j}u_{i})}{\partial x_{j}} + u_{j}\frac{\partial v_{j}}{\partial x_{i}} + \frac{\partial q}{\partial x_{i}} - \frac{\partial \tau_{ij}^{\alpha}}{\partial x_{j}} + \frac{\partial}{\partial x_{j}}\left(\frac{C_{\widetilde{S}}}{S}\widetilde{\nu_{a}}\widetilde{\nu}\left(\frac{\partial v_{i}}{\partial x_{j}} - \frac{\partial v_{j}}{\partial x_{i}}\right)\right) = 0, \quad i = 1, 2, 3 \\ R^{\widetilde{\nu_{a}}} &= -\frac{\partial (v_{j}\widetilde{\nu_{a}})}{\partial x_{j}} - \frac{\partial}{\partial x_{j}}\left(\frac{\nu + \widetilde{\nu}}{\sigma}\frac{\partial\widetilde{\nu}}{\partial x_{j}}\right) + \frac{1}{\sigma}\frac{\partial\widetilde{\nu}}{\partial x_{j}}\frac{\partial\widetilde{\nu_{a}}}{\partial x_{j}} + 2\frac{c_{b2}}{\sigma}\frac{\partial}{\partial x_{j}}\left(\widetilde{\nu_{a}}\frac{\partial\widetilde{\nu}}{\partial x_{j}}\right) + C_{\widetilde{\nu}}\widetilde{\nu}\widetilde{\nu_{a}} \\ &+ \widetilde{\nu_{a}}\left(D\left(\widetilde{\nu}, y\right) - P\left(\widetilde{\nu}, y\right)\right) + \frac{\partial u_{i}}{\partial x_{j}}\left(\frac{\partial v_{i}}{\partial x_{j}} + \frac{\partial v_{j}}{\partial x_{i}}\right)\frac{\delta\nu_{t}}{\delta\widetilde{\nu}} = 0 \end{split}$$

An Adjoint-based Optimization Loop

adjointOptimisationFoam: an adjoint-based optimization framework in OpenFOAM

- M EURO Greece
- An all-in-one OpenFOAM executable implementing an integrated, gradient-based optimization workflow
- Product of a 15 years of development at PCOpt/NTUA
- Integrated into the official OpenFOAM version in collaboration with OpenCFD in 2019
- User manual:

https://www.openfoam.com/documentation/files/adjointOptimisationFoamManual_v2312.pdf Covers all functionality up until v2406

Nikolaos GalanosDr. Ioannis KavvadiasDr Andreas MargetisDr. Alexandros ZymarisDr Themis SkamagkisJames KochDr. Konstantinos GkaragkounisDr. Andrew Heather

Acknowledgments:

Current status of adjointOptimisationFoam

OpenFOAM version	Features
v1906	 Adjoint to incompressible, steady-state flows Differentiation of the Spalart-Allmaras turbulence model Computation of sensitivity maps
v1912	 Surface and volume parameterization using volumetric B-Splines Automated shape optimization loops
v2006	 New objective function related to the qualitative evaluation and minimization of noise Sensitivity contributions from rotating boundaries
v2112	Smoothing of sensitivity maps
v2206	 Adjoint to the k-ω SST turbulence model
v2212	 Objective functions for internal aerodynamics (flow rate, flow rate distribution, uniformity, power losses)
v2312	Topology optimization

Sensitivity maps and Shape Optimization (ShpO)

Sensitivity maps:

- The derivative of J w.r.t. the normal displacement of the boundary nodes
- No optimization loop; only 1 flow + 1 adjoint solution
- Identify the areas with a high optimization potential →
 Intense colors
- Identify the favorable displacement direction → Blue: move surface inwards Red: move surface outwards

Shape optimization:

- An actual optimization loop is performed
- In each optimization cycle, the shape is updated, followed by the update of the internal grid nodes
- Each cycle has a cost of 1 flow + 1 adjoint solution
- Usually, a small number of cycles is required to reach convergence (< 20)

EURO

Greece

Parallel CFD & Optimization Unit, School of Mechanical Engineering, NTUA (PCOpt/NTUA)

The Volumetric B-Splines (of NURBS) Parameterization Tool

All cases shown below are based on morphing techniques based on volumetric B-Splines. Thus, the CFD grid is adapted simultaneously with the shape to be designed. EURO

Greece

ShpO of the Side Mirror of a Car for Noise Reduction

Minimization of the noise perceived by the driver. A turbulence-based objective function is used, so this problem <u>cannot</u> be solved without the adjoint to the turbulence model equations. Optimized on a coarse grid; the re-evaluation of the optimal solution on a fine grid confirmed a reduction in J_N by 25%.

Ger Computers & Fluids, 122:223-232, 2015.

ShpO of the Defroster Nozzle of the HVAC unit of a Car

Initial

Optimized

ShpO of the defroster nozzle of the HVAC unit of a TOYOTA passenger car, to shorten the time for dispelling condensation or frost on the windshield in the most uniform way. To this end, a certain air velocity close to the windshield must be reached. The optimized geometry was manufactured (3D printing) and submitted to a defrost test in the TME's climate chamber (@ -20°), leading to 15% less windshield defrost time. Green areas in the velocity isolines' plot on the windshield correspond to v^{target}. Application funded by ToyotA

EURO

Greece

Multi-Point Aerodynamic ShpO of a Concept Car

- Objective function:
- <u>Pareto front</u> computed by optimizing with different values of (ω_D, ω_M) .
- Two simultaneously acting morphing boxes at the spoiler and diffuser areas.

12

Multi-Point Aerodynamic ShpO of a Concept Car

RANS-based ShpO using the adjoint to the Spalart-Allmaras model (with wall functions). Optimized geometries (port side) compared to the baseline (starboard side). C_D reduction at 0° results from a lowered spoiler, boat-tailing and a prolonged and widened diffuser. C_M reduction at 30° comes mainly from the increased spoiler height and the slight widening of the car; these increase pressure on the port side and decrease it on the starboard side to counter-balance the yaw moment due to side-wind.

GC Structural and Multidisciplinary Optimization, 59(2): 675–694, 2019.

URANS Applications: Drag Min. of Motorbike's Fairing, DrivAer, ID.3 & CHR

 $J_{C_D} \downarrow -5.7\%$

normal displacement (m)

0

0.087

-0.087

Motorbike	DrivAer	ID.3	CHR
1.1M	5.3M	16.6M	37.3M
28 K	40K	10 K	28 K
32	132	132	960
	Motorbike 1.1M 28K 32	Motorbike DrivAer 1.1M 5.3M 28K 40K 32 132	Motorbike DrivAer ID.3 1.1M 5.3M 16.6M 28K 40K 10K 32 132 132

Dr. E. Papoutsis-Kiachagias, <u>vpapout@mail.ntua.gr</u>

Topology Optimization (TopO)

- Primarily used for early design of duct systems with known inlets/outlets
- No shape parameterization
- Counter-productive cells are solidified through a source term in the flow equations
- $\beta \sim 1$, solidified domain; theoretically, impermeable to flow
- $\beta = 0$, flow domain
- Topology optimization: seeks optimal *b* fluid/solid identifier to minimize an objective function and satisfy the given constraints
- Number of design variables = Number of mesh cells
- Sensitivity derivatives computed with (continuous) adjoint

From design variables to Brinkman penalization terms

Dr. E. Papoutsis-Kiachagias, vpapout@mail.ntua.gr

Primal Equations

 Most general case examined: Navier-Stokes equations & the Spalart-Allmaras model for turbulent flows:

$$R^{p} = \frac{\partial v_{i}}{\partial x_{i}} = 0$$

$$R^{v}_{i} = v_{j} \frac{\partial v_{i}}{\partial x_{j}} - \frac{\partial \tau_{ij}}{\partial x_{j}} + \frac{\partial p}{\partial x_{i}} + \underline{\beta_{max}} I_{v}(\beta) v_{i} = 0$$

$$R^{\tilde{\nu}} = v_{j} \frac{\partial \tilde{\nu}}{\partial x_{j}} - \frac{\partial}{\partial x_{j}} \left[\left(\nu + \frac{\tilde{\nu}}{\sigma} \right) \frac{\partial \tilde{\nu}}{\partial x_{j}} \right] - \frac{c_{b2}}{\sigma} \left(\frac{\partial \tilde{\nu}}{\partial x_{j}} \right)^{2} - \tilde{\nu} \mathcal{P}(\tilde{\nu}) + \tilde{\nu} \mathcal{D}(\tilde{\nu}) + \underline{\beta_{max}} I_{\tilde{\nu}}(\beta) \tilde{\nu} = 0$$

$$R^{\Delta} = \frac{\partial}{\partial x_{j}} \left(\Delta \frac{\partial \Delta}{\partial x_{j}} \right) - \Delta \frac{\partial^{2} \Delta}{\partial x_{j}^{2}} - 1 + \underline{\beta_{max}} I_{\Delta}(\beta) \Delta = 0$$
Brinkman penalization terms

- β is related to the design variable field α
- β_{max} is a dimensioned constant ensuring that the variable computed by the PDE tends to zero when θ is close to unity.

Topology optimization loop

3D TopO, Foot channel HVAC duct

- $Re = 1.3 \times 10^5$ (turbulent flow, SA model)
- 1.1×10^5 design variables
- Multiple available objective functions

Objective	Formula	
Total pressure losses	$J_{pt} = -\int_{S_{I,O}} p_t v_i n_i dS$	
Flow rate partition	$J_m = 0.5 \sum_{l} (m_l - m_l^{tar})^2$ $m_l = -\int_{S_{O,l}} v_i n_i dS / \int_{S_l} v_i n_i dS$	
Non-uniformity index	$J_u = 0.5 \sum_l \int_{S_l} (v_i - v_i^{mean})^2 dS$	
Fluid volume	$V_F = rac{\int_\Omega (1-eta) d\Omega}{\int_\Omega d\Omega}$	

3D TopO, Foot channel HVAC duct

EURO

Foot channel HVAC duct: Re-evaluation on body-fitted meshes

STL of the optimized geometry extracted by the topO code

Geometry	J_{p_t}		Mass distribution		J_u	
	ТорО	Body-fitted	ТорО	Body-fitted	ТорО	Body-fitted
G1	15.43	13.69	33/34.5/32.5	34/36/30	541	898
G2	22	16.7	33/34/33	32/34/34	354	873

Publicly Available Tools in OpenFOAM:

The latest version of the software can be downloaded from <u>https://develop.openfoam.com/Development/openfoam</u> The development branch can be found in <u>https://develop.openfoam.com/Development/openfoam/-/tree/develop</u> Extensive user-guide is available at <u>https://www.openfoam.com/documentation/files/adjointOptimisationFoamManual_v2312.pdf</u> FURO

Greece