
George Vlahavas
Researcher @ Datalab, AUTh

Using LLMs on “Aristotelis”
HPC infrastructure

1

Outline

● LLMs: Open source vs Proprietary
● How to run LLMs locally with Ollama
● How to run LLMs on Aristotelis HPC infrastructure
● Performance comparisons
● Comparison of different models: from small to large

2

● LLMs:
Open source (local deployment)
vs. Proprietary (e.g., ChatGPT)

● Pros & Cons
● Requirements for local LLMs

LLMs:
Open source

vs
Proprietary

3

Proprietary LLMs: Pros & Cons

● Pros
○ No need for infrastructure: provided as a service
○ Ease of use: available UIs, APIs
○ Accuracy: trained with tons of data
○ Scalability: can handle high volumes of data, suitable for enterprise-level applications

● Cons
○ Privacy: Data (e.g., prompts, text for annotation) provided in proprietary LLM services (e.g.,

ChatGPT) become available at the company (e.g., OpenAI).
○ Cost: paid subscription for access, cost per API request
○ Dependence on provider: no access if the provider experiences issues
○ Usage limits: rate limits, token limits, monthly limits, etc
○ Censored models: will not respond to any prompt

4

Open-source LLMs (local deployment): Pros & Cons

● Pros
○ Privacy: Information & data stay local (at your system)
○ Cost: zero cost for usage
○ Usage limits: no limits for usage (apart from local hardware limitations)
○ Uncensored models: there are versions of the more popular models that will reply to any prompt
○ Offline: once you have downloaded a model, you don’t need a network connection
○ Customizability: users can modify the models to their specific needs
○ Enhanced security: can be audited for security vulnerabilities

● Cons
○ Need for infrastructure: Infrastructure (typically powerful) is needed to support, in particular, large

LLMs
→ …but, see “Aristotelis” HPC infrastructure

○ Ease of use: need to deploy & run service
→ … but, availability UIs/APIs availability & today’s how-to manual

○ Accuracy: typically much smaller models
→ …but, things are progressing quite fast and fine tuning is possible

5

Requirements for Local LLMs

Model Parameters RAM HD Space

2B 4 GB ~1.5 GB

7B 8 GB ~4.5 GB

13B 16 GB ~7.5 GB

33B 32 GB ~20 GB

70B 64 GB ~40 GB

6

RAM can be VRAM or system RAM. Ollama will offload as many layers as can fit to the GPU and process the
remaining with system RAM/CPUs.

How to run
LLMs locally
with Ollama

● The Ollama framework
● Installation & usage
● Local hardware limitations

7

What is Ollama?

● Ollama is a software that allows users to build and run LLMs locally. Its
functionality is comparable to Docker, but for LLMs.

● It can be used in many ways: interactive shell, API, Python library…
● It contains a library of ~70 pre-built models that can be easily used in a variety

of applications, including LLaMA3, WizardLM2, Mistral and Gemma
● Will use a GPU if there is one, otherwise will fallback to CPU
● Website: https://ollama.com/
● Github: https://github.com/ollama/ollama

8

https://ollama.com/
https://github.com/ollama/ollama

Using Ollama locally

● Download and install according to the instructions
at https://ollama.com/download

● There are versions for:
○ Linux
○ macOS
○ Windows (preview)

9

https://ollama.com/download
https://ollama.com/

Using Ollama locally - starting the service

10

Starting the Ollama
service

Host:Port
(Ollama Version)

● The Ollama service provides a locally deployed service that ollama clients
can connect to

● To start the Ollama service, you can launch the desktop app
(macOS/Windows)

● Or start the service from the command line (all platforms):

$ ollama serve

Using Ollama locally - managing models

● Download a model with:

$ ollama pull <model_name>

Example:

$ ollama pull gemma:2b

● Get a list of all models you have downloaded:

$ ollama list

● Remove a model that you no longer want:

$ ollama rm <model_name>

11

Using Ollama locally - running a model

● You can interact with a model by running:

$ ollama run <model_name>

● When using the run command, if a non-local model is selected, it will be
downloaded automatically

12

Using Ollama locally - interaction

● After running $ ollama run <model_name> you get a message prompt:

● You can then type any prompt and get an answer from your desired model

● To exit type: /bye (or Ctrl-D)

13

Local Hardware Limitations
● Trying to run local LLMs on:

○ A desktop PC:
■ Intel Core i7-9700K CPU @ 3.60GHz
■ 32 GB RAM
■ NVIDIA GeForce GTX 1050 Ti 4GB

○ A laptop:
■ Intel Core i7-1165G7 @ 2.80GHz
■ 32 GB RAM
■ No GPU

14

Desktop Laptop

Model Layers in GPU Tokens/s Tokens/s

tinyllama:1.1b 23/23 77 26

gemma:2b 19/19 36 11

llama3:8b 13/33 5.8 3.8

llama2:13b 10/41 3.3 2.3

qwen:32b 5/65 1.2 1.0

llama3:70b ERROR - ?

How to run
LLMs on

Aristotelis HPC
infrastructure

● Ollama Installation
● OnDemand
● Batch jobs
● Interactive session
● REST API
● Jupyter notebook
● Clients and UIs
● Potential Issues

15

How to run
LLMs on

Aristotelis HPC
infrastructure

● Ollama Installation
● OnDemand
● Batch jobs
● Interactive session
● REST API
● Jupyter notebook
● Clients and UIs
● Potential Issues

16

Ollama Installation on Aristotelis
● Use preinstalled module (easiest but may sometimes lag a few versions

behind)

● Install in user’s home (latest version)

17

$ module load ollama

$ # install ollama, run these whenever there is a new release available

$ mkdir -p $HOME/ollama/bin

$ curl -L https://ollama.com/download/ollama-linux-amd64 -o \

 $HOME/ollama/bin/ollama

$ chmod +x $HOME/ollama/bin/ollama

$ # to use it, just add it to your $PATH

$ export PATH=$PATH:$HOME/ollama/bin

How to run
LLMs on

Aristotelis HPC
infrastructure

● Ollama Installation
● OnDemand
● Batch jobs
● Interactive session
● REST API
● Jupyter notebook
● Clients and UIs
● Potential Issues

18

OnDemand

● Running OnDemand is just like running locally
● OnDemand nodes offer Nvidia Quadro RTX 6000 6GB GPUs
● Follow the instructions at https://hpc.it.auth.gr/web-portal/ to login to Aristotle

Desktop
● Run ollama serve in one terminal
● Run ollama run <model_name> on another

* Run module load ollama on every terminal you open before running ollama commands

19

https://hpc.it.auth.gr/web-portal/

OnDemand - Potential Issue

● If someone else is already running an ollama service on the same node, you’ll
get an error message

● Solution: specify a different port, try until it works

20

$ ollama serve

Error: listen tcp 127.0.0.1:11434: bind: address already in use

$ OLLAMA_HOST=127.0.0.1:15678

$ ollama serve

How to run
LLMs on

Aristotelis HPC
infrastructure

● Ollama Installation
● OnDemand
● Batch jobs
● Interactive session
● REST API
● Jupyter notebook
● Clients and UIs
● Potential Issues

21

First Steps

● You need to login with ssh (https://hpc.it.auth.gr/intro/) to a login node. Run:

$ ssh <username>@aristotle.it.auth.gr

● You need a VPN if you are not inside AUTH network. VPN instructions here:
https://it.auth.gr/manuals/eduvpn/

● You can also use the Web Portal to login (https://hpc.it.auth.gr/web-portal/).
No VPN needed.

● Then you need the bash script to submit your job…
● Instructions about submitting ollama batch scripts at

https://hpc.it.auth.gr/applications/ollama/

22

https://hpc.it.auth.gr/intro/
https://it.auth.gr/manuals/eduvpn/
https://hpc.it.auth.gr/web-portal/
https://hpc.it.auth.gr/applications/ollama/

#!/bin/bash

#SBATCH --job-name=Ollama-batch

#SBATCH --partition=ampere

#SBATCH --time=10:00

#SBATCH --nodes=1

#SBATCH --gres=gpu:1

#SBATCH --output=output.log

module load ollama

Create a temp directory

export TMPDIR=$SCRATCH/ollama_tmp

mkdir -p $TMPDIR

Choose a random available port for the ollama service

while true; do

 OLLAMA_PORT="`shuf -i 10000-20000 -n 1`"

 ss -lpna | grep -q ":$OLLAMA_PORT " || break

done

export OLLAMA_HOST=127.0.0.1:${OLLAMA_PORT}

Start Ollama service

ollama serve &> serve_ollama_${SLURM_JOBID}.log &

Wait until Ollama service has been started

sleep 20

Run Ollama using llama3 model

ollama run llama3 "How do you schedule a job with slurm?"

Terminate Ollama service

killall ollama

Batch job

Create SLURM submission script and use Ollama through that

● Loads latest version of ollama module.
● Sets Ollama to use a random available port
● Starts the ollama service in the background and

redirects both standard output and standard
error to a log file named
serve_ollama_{SLURM_JOBID}.log.

● Executes the ollama run command using the
model llama3. If the model is not already
installed in the user's account, the system will
first execute ollama pull to download the model.
This may add some time to the process

● You may submit multiple prompts
● The job exits as soon as it is completed

23

SBATCH options
Examples of SBATCH options:

1. --job-name: defines the name of the job to be submitted
2. --partition: specifies the queue in which the job will be submitted
3. --time: determines the maximum time we need to complete the job
4. --output: specifies the path where the output channel (STDOUT)

of our batch job will appear

24

#!/bin/bash

#SBATCH --job-name=Ollama-batch

#SBATCH --partition=ampere

#SBATCH --time=10:00

#SBATCH --nodes=1

#SBATCH --gres=gpu:1

#SBATCH --output=output.log

Batch job - output Submit a job

25

Tail the .log file of
Ollama service

POST command
on Ollama API

Tail the .log file of
the submitted job

Ollama Python library

● The Ollama Python library is a
convenient toolkit that allows
you to directly utilize the
available Large Language
Models in Ollama within your
Python scripts. It can be
installed with pip:

$ pip install ollama

A small example on how to run Llama3 from the Ollama Python library

26

Note: The Ollama service needs to be running…

#!/usr/bin/env python3

import ollama

import os

ollama_host = os.getenv('OLLAMA_HOST')

client = ollama.Client(host=ollama_host)

response = client.chat(model='llama3', messages=[

 {

 'role': 'user',

 'content': 'What popular operating system, launched in 1991, \

 also has its own mascot, Tux the penguin?'

 }

])

print(response['message']['content'])

Batch job with Python script - Python environment
How to create a virtual environment including ollama

● Simplest way → use Python's
built-in venv module

● Create and activate the
environment myenv

● Useful to upgrade Python's
standard package manager (pip)
to the latest available version
before proceeding with the
installation of additional packages

● Install via pip all the desired
libraries

27

More information on
https://hpc.it.auth.gr/languages/python/

https://hpc.it.auth.gr/languages/python/

Batch job with Python script - batch script
Python script and ollama python library

● Starts the ollama service and pipes its output to
both the console and a log file named
serve_ollama_${SLURM_JOBID}.log

● Activates the Python virtual environment where
ollama and its dependencies are installed

● Executes a Python script named test_ollama.py
with unbuffered output and redirects its output
to a file named python_script_output.txt

28

#!/bin/bash

#SBATCH --job-name=Ollama-batch

#SBATCH --partition=ampere

#SBATCH --time=10:00

#SBATCH --nodes=1

#SBATCH --gres=gpu:1

#SBATCH --output=output.log

module load ollama

Create a temp directory

export TMPDIR=$SCRATCH/ollama_tmp

mkdir -p $TMPDIR

Choose a random available port for the ollama service

while true; do

 OLLAMA_PORT="`shuf -i 10000-20000 -n 1`"

 ss -lpna | grep -q ":$OLLAMA_PORT " || break

done

export OLLAMA_HOST=127.0.0.1:${OLLAMA_PORT}

Start Ollama service

ollama serve &> serve_ollama_${SLURM_JOBID}.log &

Wait until Ollama service has been started

sleep 20

Activate the virtual environment

source ollama_env/bin/activate

Run the python script

python -u test_ollama.py > python_script_output.txt

Terminate Ollama service

killall ollama

How to run
LLMs on

Aristotelis HPC
infrastructure

● Ollama Installation
● OnDemand
● Batch jobs
● Interactive session
● REST API
● Jupyter notebook
● Clients and UIs
● Potential Issues

29

#!/bin/bash

#SBATCH --job-name=Ollama-service

#SBATCH --partition=ampere

#SBATCH --time=10:00

#SBATCH --nodes=1

#SBATCH --gres=gpu:1

#SBATCH --output=output.log

module load ollama

Create a temp directory

export TMPDIR=$SCRATCH/ollama_tmp

mkdir -p $TMPDIR

Choose a random available port for the ollama service

while true; do

 OLLAMA_PORT="`shuf -i 10000-20000 -n 1`"

 ss -lpna | grep -q ":$OLLAMA_PORT " || break

done

Retrieve the public IP address of the host

IP_ADDR=$(curl ip.me)

Set the OLLAMA_HOST variable

export OLLAMA_HOST=${IP_ADDR}:${OLLAMA_PORT}

Send a push notification to my phone (see https://ntfy.sh for more)

curl -d "${SLURM_JOBID}@${OLLAMA_HOST}:${OLLAMA_PORT}." ntfy.sh/ollama123

Start Ollama service

ollama serve &> serve_ollama_${SLURM_JOBID}.log

Interactive Session - batch script
You can run the Ollama service on the HPC cluster and the client on a login node!

● Retrieves the public IP address of the
host using curl from the ip.me service
and sets it as the OLLAMA_HOST
environment variable

● Starts the ollama service and pipes its
output to both the console and a log file
named
serve_ollama_${SLURM_JOBID}.log

● You don’t run ollama run in the batch
script in this case

30

https://ntfy.sh

$ module load ollama

load ollama 0.1.32 (PATH)

$ export OLLAMA_HOST=155.207.96.50:12906

$ ollama run llama3

>>> Send a message (/? for help)

$ sbatch ollama_service.sh

Submitted batch job 1796446

$ tail -f serve_ollama_1796446.log

time=2024-04-24T08:43:49.320+03:00 level=INFO source=images.go:817 msg="total blobs: 44"

time=2024-04-24T08:43:49.356+03:00 level=INFO source=images.go:824 msg="total unused blobs removed: 0"

time=2024-04-24T08:43:49.360+03:00 level=INFO source=routes.go:1143 msg="Listening on 155.207.96.50:12906 (version 0.1.32)"

Interactive Session

Make sure you connect to the
right IP and port from the login
node!

31

● Submit the job:

● Connect to it from the login node:

How to run
LLMs on

Aristotelis HPC
infrastructure

● Ollama Installation
● OnDemand
● Batch jobs
● Interactive session
● REST API
● Jupyter notebook
● Clients and UIs
● Potential Issues

32

● Remember that ollama runs a service component. What you get with ollama
run is just a client. The simplest client is a just a REST API

● Generate a response:

● Chat with a model:

curl http://155.207.96.50:11434/api/generate -d '{ "model": "llama3", \

 "prompt":"Why is the sky blue?" }'

REST API

33

155.207.96.50 is the IP of the HPC node that
runs the ollama service in this example and
11434 is the port. Substitute them for the
ones you’re using.

curl http://155.207.96.50:11434/api/chat -d '{ "model": "llama3", \

 "messages": [{"role": "user", "content": "Why is the sky blue?"}]}'

REST API - example output
{"model":"llama3","created_at":"2024-04-20T20:24:08.725750389Z","response":"What","done":false}
{"model":"llama3","created_at":"2024-04-20T20:24:08.882499464Z","response":" a","done":false}
{"model":"llama3","created_at":"2024-04-20T20:24:09.036335811Z","response":" great","done":false}
{"model":"llama3","created_at":"2024-04-20T20:24:09.191317995Z","response":" question","done":false}
{"model":"llama3","created_at":"2024-04-20T20:24:09.354884382Z","response":"!\n\n","done":false}
{"model":"llama3","created_at":"2024-04-20T20:24:09.518166884Z","response":"The","done":false}
{"model":"llama3","created_at":"2024-04-20T20:24:09.673687543Z","response":" sky","done":false}
{"model":"llama3","created_at":"2024-04-20T20:24:09.827425264Z","response":" appears","done":false}
{"model":"llama3","created_at":"2024-04-20T20:24:09.983749935Z","response":" blue","done":false}
{"model":"llama3","created_at":"2024-04-20T20:24:10.137785563Z","response":" because","done":false}
{"model":"llama3","created_at":"2024-04-20T20:24:10.293128093Z","response":" of","done":false}
{"model":"llama3","created_at":"2024-04-20T20:24:10.449808154Z","response":" a","done":false}
...

34

* REST API can be accessed from login nodes. For ampere and ondemand it can also be accessed from all AUTH network for ports
11434-11443.

How to run
LLMs on

Aristotelis HPC
infrastructure

● Ollama Installation
● OnDemand
● Batch jobs
● Interactive session
● REST API
● Jupyter notebook
● Clients and UIs
● Potential Issues

35

Jupyter Notebook (1/3)
● Start ollama service with the same batch script as in the Interactive Session. Be sure to

note the host ip!
● Start a Jupyter Server on the cluster (Through the menu on https://hpc.auth.gr choose

Interactive Apps -> Jupyter)

36

https://hpc.auth.gr

Jupyter Notebook (2/3)
● Read the instructions at https://hpc.it.auth.gr/applications/jupyter/ on how to setup a

Python virtual environment
● Make sure you install the ollama library

37

mkdir envs
cd envs
python -m venv ollama_env
source ollama_env/bin/activate
pip install --upgrade pip
pip install jupyter
python -m ipykernel install --user --name my-custom-env --display "Ollama env"
pip install ollama

https://hpc.it.auth.gr/applications/jupyter/

Jupyter Notebook (3/3)
● Create a new notebook using the new ollama environment

38

Ollama service node
IP and port

How to run
LLMs on

Aristotelis HPC
infrastructure

● OnDemand
● Batch jobs
● Interactive session
● Jupyter notebook
● REST API
● Clients and UIs
● Potential Issues

39

Clients and UIs

You can build other clients on top of the REST API. There are several different
ones available

● Web UI
● Terminal
● Editor
● Mobile
● Plugins
● Libraries

There is a long list at https://github.com/ollama/ollama

40

https://github.com/ollama/ollama

Clients and UIs - batch script

You’ll also need to set the
OLLAMA_ORIGINS=”*”
variable in your batch script to
allow access from web
browsers. It’s a CORS issue.

Note the smaller range of
ports.

41

OLLAMA_ORIGINS=”*”

#!/bin/bash

#SBATCH --job-name=Ollama-service

#SBATCH --partition=ampere

#SBATCH --time=10:00

#SBATCH --nodes=1

#SBATCH --gres=gpu:1

#SBATCH --output=output.log

module load ollama

Create a temp directory

export TMPDIR=$SCRATCH/ollama_tmp

mkdir -p $TMPDIR

Choose a random available port for the ollama service

while true; do

 OLLAMA_PORT="`shuf -i 11434-11443 -n 1`"

 ss -lpna | grep -q ":$OLLAMA_PORT " || break

done

Retrieve the public IP address of the host

IP_ADDR=$(curl ip.me)

Set the OLLAMA_HOST variable

export OLLAMA_HOST=${IP_ADDR}:${OLLAMA_PORT}

Allow browsers to connect to the service

export OLLAMA_ORIGINS=”*”

Send a push notification to my phone (see https://ntfy.sh for more)

curl -d "${SLURM_JOBID}@${OLLAMA_HOST}:${OLLAMA_PORT}." ntfy.sh/ollama123

Start Ollama service

ollama serve &> serve_ollama_${SLURM_JOBID}.log

https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://ntfy.sh

Clients and UIs - Webapp (1/4)

42

A simple UI is available as a webapp at https://ollama-ui.github.io/ollama-ui/

● Can be used with Firefox
● Doesn’t work with Chrome

You will get this error message when your load the webapp. That’s OK, close the message…

https://ollama-ui.github.io/ollama-ui/

Clients and UIs - Webapp (2/4)

43

You need to enter the ollama service IP address along with the port in the format

http://ip_address:port

Clients and UIs - Webapp (3/4)

44

Click on the lock icon on the address bar and select to Disable protection for now

(it’s a “Mixed content” issue, loading http content from an https page)

Clients and UIs - Webapp (4/4)

45

And then it works!

● The available models will
be shown in the Model
dropdown and you can
select the one you’d like to
use.

● You can save any
conversations you’d like to
keep

Clients and UIs - Chrome browser plugin (1/7)

The webapp doesn’t work with Chrome, but there is a plugin for it. Go to the Chrome Web Store …

46

Clients and UIs - Chrome browser plugin (2/7)

47

Select to add the ollama-ui extension to Chrome…

Clients and UIs - Chrome browser plugin (3/7)

48

And it will be available from the extensions button on the Chrome toolbar. Click on it…

Clients and UIs - Chrome browser plugin (4/7)

49

Start the extension and you’ll get the same error message as with Firefox. That’s OK, close the message…

Clients and UIs - Chrome browser plugin (5/7)

50

… and set the hostname to the IP address of the HPC cluster node the ollama service is running on.

Once you do, the available models will be shown in the Model dropdown and you can select the one you’d
like to use.

Clients and UIs - Chrome browser plugin (6/7)

51

You’re then able to chat with your selected model. You can save any conversations
you’d like to keep.

Clients and UIs - Chrome browser plugin (7/7)

52

● Issue: the Chrome extension
only works with port 11434.

● You’ll have to set this port
explicitly

● Possibility of port clashing

#!/bin/bash

#SBATCH --job-name=Ollama-service

#SBATCH --partition=ampere

#SBATCH --time=10:00

#SBATCH --nodes=1

#SBATCH --gres=gpu:1

#SBATCH --output=output.log

module load ollama

Create a temp directory

export TMPDIR=$SCRATCH/ollama_tmp

mkdir -p $TMPDIR

Retrieve the public IP address of the host

IP_ADDR=$(curl ip.me)

Set the OLLAMA_HOST variable

export OLLAMA_HOST=${IP_ADDR}:11434

Allow browsers to connect to the service

export OLLAMA_ORIGINS="*"

Send a push notification to my phone (see https://ntfy.sh for more)

curl -d "${SLURM_JOBID}@${OLLAMA_HOST}:${OLLAMA_PORT}." ntfy.sh/ollama123

Start Ollama service

ollama serve &> serve_ollama_${SLURM_JOBID}.log

https://ntfy.sh

How to run
LLMs on

Aristotelis HPC
infrastructure

● OnDemand
● Batch jobs
● Interactive session
● Jupyter notebook
● REST API
● Clients and UIs
● Potential Issues

53

Potential Issues

54

● Not enough HD space for big models
○ Default $HOME for users is 20GB
○ Large models can’t fit

● Possible solutions:
○ Request more space for your account: https://hpc.it.auth.gr/home-directories/
○ Store the ~/.ollama directory under $SCRATCH and symlink it from there

■ Files get deleted from $SCRATCH after 30 days

$ mkdir -p $SCRATCH/ollama-models

$ ln -s $SCRATCH/ollama-models ~/.ollama

https://hpc.it.auth.gr/home-directories/

Performance
Comparisons

● Model Performance on
Aristotelis

55

Model performance on Aristotelis

56

ampere ondemand rome batch

Model Layers in
GPU

Tokens/s Layers in
GPU

Tokens/s Tokens/s Tokens/s

tinyllama:1.1b 23/23 233 23/23 135 8.3 7.3

gemma:2b 19/19 156 19/19 106 6.9 4.3

llama3:8b 33/33 97 33/33 66 5.3 3.0

llama2:13b 41/41 84 22/41 <0.1 3.1 ?

qwen:32b 65/65 38 ? ? ? ?

llama3:70b 81/81 24.3 ? ? ? ?

* ollama does not work on the gpu cluster for now

Model performance on Aristotelis - GPU vs CPU

57

● Running on GPUs is considerably faster!
● 7b and 8b models can run adequately on CPUs. If your local PC is not capable of

running them, they can provide an alternative
● On CPUs, you should make sure to run the process in a single socket. Otherwise

performance will suffer.

#!/bin/bash

#SBATCH --job-name=Ollama-cpu-serve

#SBATCH --partition=rome

#SBATCH --time=20:00

#SBATCH --nodes=1

#SBATCH --ntasks=1

#SBATCH --cpus-per-task=64

#SBATCH --extra-node-info=1:64

#SBATCH --output=output-rome.log

Comparison of
different

models: from
small to large

● LLM Leaderboard
● Quality of responses example
● Model Overview

58

LLM Leaderboard (1/2)

LMSYS Chatbot Arena

59

https://chat.lmsys.org/?leaderboard

LLM Leaderboard (2/2)

60

LMSYS Chatbot Arena

https://chat.lmsys.org/?leaderboard

Quality of responses (1/4)

Small models

● tinydolphin:1.1b missed the fact that they actually took place in a different
year

● gemma:2b knows that it doesn’t know! Impressive for an LLM.

61

I cannot access real-time information and cannot
provide specific dates for the 2020 Olympics. For
the most up-to-date information, please check the
official Olympics website or any reputable news
sources.

gemma:2b

The 2020 Summer Olympics took place from July 24th
to August 9th in Tokyo, Japan.

tinydolphin:1.1b

Quality of responses (2/4)

Medium models

● gemma:7b was correct and just on point
● llama2:7b was wrong and so was llama2:13b

62

The 2020 Summer Olympics, also known as the XXXII
Olympiad, took place from July 24 to August 9,
2020, in Tokyo, Japan.

The 2020 Olympics took place from July 23 to
August 8, 2021.

gemma:7b

llama2:7b

The 2020 Summer Olympics, officially known as the
Games of the XXXII Olympiad, took place from July
24 to August 9, 2020, in Tokyo, Japan.

llama2:13b

Quality of responses (3/4)

● But llama3:8b and llama3:70b both got it perfectly right. Their replies were
almost identical and very informative!

63

There was no "2020 Olympics" that took place. The
Olympic Games were postponed to 2021 due to the
COVID-19 pandemic.

The originally scheduled Tokyo 2020 Summer
Olympics were supposed to take place from July 24
to August 9, 2020. However, on March 24, 2020,
the International Olympic Committee (IOC) and the
Tokyo Organizing Committee announced that
the Games would be postponed to 2021.

The rescheduled Tokyo 2020 Summer Olympics took
place from July 23 to August 8, 2021.

There was no "2020 Olympics". The correct name is
the 2020 Summer Olympics, also known as Tokyo
2020.

The 2020 Summer Olympics were originally
scheduled to take place from July 24 to August 9,
2020, in Tokyo, Japan. However, due to the
COVID-19 pandemic, the International Olympic
Committee (IOC) and the Tokyo Organizing
Committee
announced on March 24, 2020, that the Games would
be postponed to 2021.

The rescheduled 2020 Summer Olympics took place
from July 23 to August 8, 2021, in Tokyo, Japan.

llama3:8b llama3:70b

Quality of responses (4/4)

● Some proprietary LLMs just for the sake of comparison…

64

The 2020 Summer Olympics, despite their name, actually
took place in 2021 due to the postponement caused by
the COVID-19 pandemic. The Games were held in Tokyo,
Japan, from July 23 to August 8, 2021.

The 2020 Summer Olympics, originally schedules for
2020, were postponed due to the COVID-19 pandemic and
took place from July 23 to August 8, 2021, in Tokyo,
Japan.

ChatGPT 3.5

ChatGPT 4

The 2020 Summer Olympics, officially known as the
Games of the XXXII Olympiad, were held in Tokyo,
Japan, from July 23 to August 8, 2021.

Gemini-1.5-pro

The 2020 Summer Olympics were originally scheduled to
take place in Tokyo, Japan from July 24 to August 9,
2020. However, due to the COVID-19 pandemic, the
Olympics were postponed by a year. The rescheduled
2020 Tokyo Olympics ultimately took place from July 23
to August 8, 2021, still in Tokyo.

So while originally planned for 2020, the Games of the
XXXII Olympiad went ahead in 2021 after the
unprecedented delay caused by the global health
crisis. It was the first time in Olympic history that
the Games had been postponed rather than canceled.

Claude-3-Sonnet

Model Overview
● Small models (1-2b):

○ Designed to be efficient and compact
○ Useful when accuracy is not the

primary concern
○ Can be easily fine-tuned to specific

uses
■ Text classification
■ Sentiment analysis
■ Basic chatbots
■ Simple definitions
■ Grammar/syntax corrections

○ Can be used even in underpowered
devices

● Medium models (~7-13b)
○ Improved task performance
○ Enhanced contextual understanding
○ Increased ability to generalize
○ Efficient on average modern PCs
○ Very fast on high-end hardware

65

● Larger Models (70b):
○ State-of-the-art
○ Deep understanding of complex

patterns and relationships
○ Capacity for abstraction
○ May rival top proprietary LLMs
○ Need high-end hardware to operate

efficiently
● Size matters, but it’s not everything
● Things are progressing at an incredible pace

Thank you!

Questions?

66

