
Introduction to Large Language Models
Dr Nikos Bakas nibas@grnet.gr

https://eurocc-greece.gr/

- p.1/25 Dr Nikos Bakas

nibas@grnet.gr
https://eurocc-greece.gr/


- p.2/25 Dr Nikos Bakas



1

Generative AI

3



1.1 Turing’s Test

The development of digital computers marked the beginning of artificial intelligence being
recognized as a viable field.

The Turing Test evaluates a machine’s ability to exhibit human-like intelligence.
It is passed if the machine’s responses are indistinguishable from a human’s.

“The Mathematical Objection”1

• based on Gödel’s incompleteness
theorem2 about logical systems,

• “describing logical systems
in terms of machines”

• assuming a machine with
“infinite capacity”

• “there are certain things
that such a machine cannot do”

Figure 1.1: Turing’s Test3

This sounds disappointing (along with the Incompleteness Theorem). However, does it matter?

1A. M. TURING (Oct. 1950). “I.—COMPUTING MACHINERY AND INTELLIGENCE”. in: Mind LIX.236, pp. 433–460. issn: 0026-4423. doi: 10.1093/mind/LIX.236.433
2Kurt Gödel (1931). “On Formally Undecidable Propositions of Principia Mathematica and Related Systems I”. in: Monatshefte für Mathematik und Physik 38.1, pp. 173–198
3Juan Alberto Sánchez Margallo https://creativecommons.org/licenses/by/2.5/ https://en.wikipedia.org/wiki/Turing_test#/media/File:Turing_test_diagram.png

CHAPTER 1. GENERATIVE AI- p.4/25 Dr Nikos Bakas

https://doi.org/10.1093/mind/LIX.236.433
https://creativecommons.org/licenses/by/2.5/
https://en.wikipedia.org/wiki/Turing_test#/media/File:Turing_test_diagram.png


1.2 "Shakespeare’s" poem on AI and HPC

Prompt: Write a poem for AI and HPC in the style of William Shakespeare

. . .

High Performance Computing, noble steed,

On which we ride to meet our greatest need,

With speed unbridled, across data plains,

To solve the puzzles locked within our brains.

And AI, fair muse, who with gentle hand,

Guides us through the unknowns of digital land,

With algorithms fine and patterns clear,

Brings to light the answers we hold dear.

. . .
CHAPTER 1. GENERATIVE AI- p.5/25 Dr Nikos Bakas



1.3 Language issues

“this is not a supercomputer ”

CHAPTER 1. GENERATIVE AI- p.6/25 Dr Nikos Bakas



1.4 Semiotics

We need to represent words in a manner that captures both:

• specific things like the physical form of a cup

• abstract ideas and concepts

CHAPTER 1. GENERATIVE AI- p.7/25 Dr Nikos Bakas



1.5 Word representation

In language, words function as signs (signifiers) with specific meanings.

Vocabulary with one word

• If exists in the text:
word1 = [1]

• If does not exist in the text:
word1 = [0]

• One number (0-1) is enough to represent the existence of a single word.

• This is a common concept of representing categorical variables in machine learning.

To represent 2 words with numbers, we cannot use a single number because if e.g.,
word1 = 1 and word2 = 2 then we would imply that word2 is somehow twice word1.

We need vectors with 2 dimensions.

CHAPTER 1. GENERATIVE AI- p.8/25 Dr Nikos Bakas



1.6 One-hot encoding

Vocabulary with two words

word1 = [1, 0]

word2 = [0, 1]

1.7 Representation of sentences

We need to preserve word sequencing.

For example if

“this” = [1, 0]

and
“is” = [0, 1]

then
“this is” = [1, 0, 0, 1]

and
“is this” = [0, 1, 1, 0]

which provide different vectors.
CHAPTER 1. GENERATIVE AI- p.9/25 Dr Nikos Bakas



1.8 Vocabulary with N words
One-hot Encoding for N words

In a vocabulary with N words, we use a vector of length N to represent each word. This
is called one-hot encoding, where each word is represented by a vector that has a 1 in its
corresponding position and 0s elsewhere.

• For a vocabulary of N words: word1, word2, ..., wordN

• The vector representation for word1 would be:

word1 = [1, 0, 0, ..., 0]

• The vector representation for word2 would be:

word2 = [0, 1, 0, ..., 0]

• And so on, until:

• The vector representation for wordN would be:

wordN = [0, 0, 0, ..., 1]

This approach ensures that each word is uniquely represented, avoiding any implication of
numerical relationships between different words.

The vector length increases with the number of words, making this method efficient for
smaller vocabularies but highly demanding for very large datasets.

CHAPTER 1. GENERATIVE AI- p.10/25 Dr Nikos Bakas



1.9 Semantic Limitations of One-hot Encoding
Dot Product of Related Words

In one-hot encoding, the representation of each word is orthogonal to every other word
in the same vocabulary. This means that the dot product between the vectors of any two
different words is always zero, regardless of their semantic relationship.

• Consider two semantically related words, say car and automobile. In a vocabulary where
each word is represented as a unique one-hot encoded vector:

car = [1, 0, 0, ..., 0]

automobile = [0, 1, 0, ..., 0]

• The dot product between car and automobile would be:

car · automobileT = 1× 0 + 0× 1 + 0× 0 + ... + 0× 0 = 0

This calculation illustrates a fundamental limitation:

Even though car and automobile are synonyms, their one-hot vectors are orthogonal, and
their dot product does not reflect any semantic closeness.

This outcome is a clear indicator that one-hot encoding is purely syntactic and lacks
the capability to capture and represent the semantic relationships between words.

CHAPTER 1. GENERATIVE AI- p.11/25 Dr Nikos Bakas



1.10 Word Embeddings and Distributional Semantics
Word embeddings are a type of word representation that allows words with similar meaning
to have a similar representation. Based on the principle articulated by J.R. Firth in 1957,

"You shall know a word by the company it keeps"

embeddings encode words into high-dimensional space based on their contexts.

• Similar words cluster together in the vector space, making it possible to perform arith-
metic operations like "king" - "man" + "woman" = "queen".

• Word embeddings significantly reduce the dimensionality compared to one-hot en-
coding while providing a much richer semantic representation.

Examples of Embedding Models:

• Word2Vec and GloVe utilize the context of words to learn dense embeddings, where
the dot product reflects semantic similarity to some extent.

• BERT and other transformer-based models further enhance this by considering the entire
context of a word’s usage in language, leading to even richer semantic representations.

CHAPTER 1. GENERATIVE AI- p.12/25 Dr Nikos Bakas



1.11 Optimizing Word Embeddings
Optimizing word embeddings involves identifying the best vector representations that accu-
rately capture semantic relationships in a dataset.

1.11.1 Objective Function

The objective function, denoted by L, eval-
uates the performance of word vectors in their
ability to predict context words. In the con-
text of the Word2Vec model, the function L
to be maximized is:

L =
∑

(w,c)∈D

logP (c|w)

Here, w is a target word, c is a context word,
and D consists of all pairs of target and con-
text words in the dataset. The probability
P (c|w) is computed as follows:

P (c|w) = exp(vw · uc)∑
c′∈Vocabulary exp(vw · uc′)

where vw and uc are the vector representa-
tions of the target word w and the context
word c respectively.

• Numerator (exp(vw · uc)): This term is
the exponential of the dot product be-
tween the vector of the target word w and
the vector of the context word c. It quan-
tifies the compatibility or similarity be-
tween w and c, with a higher dot prod-
uct resulting in a larger value, indicating
a stronger relationship.

• Denominator (
∑

c′∈Vocabulary exp(vw ·
uc′)): This sum involves the exponential of
the dot products between the vector of the
target word w and every possible context
word vector in the vocabulary. It serves
as a normalization factor that ensures the
probabilities across all possible con-
text words sum to one, thus forming a
valid probability distribution.

CHAPTER 1. GENERATIVE AI- p.13/25 Dr Nikos Bakas



This formulation uses the softmax function to convert the dot products into probabilities
that sum to one over all possible context words. The optimization goal is to maximize L,
which aggregates the log probabilities of predicting the correct context words given target
words, effectively enhancing the semantic accuracy of the embeddings.

1.11.2 Optimization Algorithm

Gradient descent is the algorithm of choice for maximizing L. This iterative method adjusts
word vectors to improve the value of L. The update formula is:

v = v − η∇L(v)

In this formula, v represents a word vector, η is the learning rate, and ∇L(v) is the gradient
of L at v, directing the update towards the highest increase of the likelihood function.

By effectively maximizing L, this optimization process refines word vectors, enhancing
their ability to predict context and thereby improving both their syntactic and semantic
accuracies.

CHAPTER 1. GENERATIVE AI- p.14/25 Dr Nikos Bakas



1.12 Code implementation

import numpy as np

# Define the corpus
corpus = [
    "The apple is a sweet fruit that many enjoy fresh",
    "The vast ocean is far from the quiet orchard"
]

# Tokenize and create a vocabulary index
words = set(word for sentence in corpus for word in sentence.lower().split())
word_to_index = {word: i for i, word in enumerate(words)}
vocab_size = len(word_to_index)

# Initialize word vectors with small random values for simplicity
np.random.seed(42)
embed_size = 50  # Size of each word vector
word_vectors = np.random.rand(vocab_size, embed_size) * 0.1

# Define a simple training routine to simulate relatedness
def train_adjusted(word_vectors, word_to_index, learning_rate=0.01, iterations=100):
    for _ in range(iterations):
        apple_idx = word_to_index['apple']
        fruit_idx = word_to_index['fruit']
        ocean_idx = word_to_index['ocean']

        # Normalize vectors initially
        word_vectors[apple_idx] /= np.linalg.norm(word_vectors[apple_idx])
        word_vectors[fruit_idx] /= np.linalg.norm(word_vectors[fruit_idx])
        word_vectors[ocean_idx] /= np.linalg.norm(word_vectors[ocean_idx])

        # Adjust vectors
        word_vectors[apple_idx] += learning_rate * (word_vectors[fruit_idx] - word_vectors[apple_idx ⌋

])↪→

CHAPTER 1. GENERATIVE AI- p.15/25 Dr Nikos Bakas



        word_vectors[fruit_idx] += learning_rate * (word_vectors[apple_idx] - word_vectors[fruit_idx ⌋

])↪→

        word_vectors[ocean_idx] -= learning_rate * (word_vectors[apple_idx] - word_vectors[ocean_idx ⌋

])↪→

        # Re-normalize vectors after adjustment
        word_vectors[apple_idx] /= np.linalg.norm(word_vectors[apple_idx])
        word_vectors[fruit_idx] /= np.linalg.norm(word_vectors[fruit_idx])
        word_vectors[ocean_idx] /= np.linalg.norm(word_vectors[ocean_idx])

# Train with adjusted function
train_adjusted(word_vectors, word_to_index)

# Get the vectors
apple_vec = word_vectors[word_to_index['apple']]
fruit_vec = word_vectors[word_to_index['fruit']]
ocean_vec = word_vectors[word_to_index['ocean']]

# Compute and print Dot products
print("Dot product between 'apple' and 'fruit':", np.dot(apple_vec, fruit_vec))
print("Dot product between 'apple' and 'ocean':", np.dot(apple_vec, ocean_vec))

Output:

>>> Dot product between 'apple' and 'fruit': 0.995439598890918
>>> Dot product between 'apple' and 'ocean': -0.002559936403922

CHAPTER 1. GENERATIVE AI- p.16/25 Dr Nikos Bakas



1.13 Training Transformers with Embedded Word Representations

Transformers, a class of models introduced
by Vaswani et al. in 2017, utilize word em-
beddings to understand and generate human
language. These models leverage the power
of self-attention mechanisms to consider the
context of each word in a sentence, regardless
of their position.

Transformers do not process words
sequentially like older RNN-based

models. Instead, they handle all words
in parallel, significantly improving speed

and efficiency.
Figure 1.2: The Transformer model architecture4

• Input Embedding: The input words are converted into vectors.

• Positional Encoding: This step adds information about the position of each word in
the sequence to the embeddings.

4Yuening Jia - DOI:10.1088/1742-6596/1314/1/012186
https://en.wikipedia.org/wiki/Transformer_(deep_learning_architecture)#/media/File:The-Transformer-model-architecture.png
https://creativecommons.org/licenses/by-sa/3.0

CHAPTER 1. GENERATIVE AI- p.17/25 Dr Nikos Bakas



• Multi-Head Attention: This layer al-
lows the model to focus on different po-
sitions of the input sequence, essentially
enabling it to understand context and
relationships between words.

• Add & Norm: Also known as residual
connections followed by layer normaliza-
tion. These steps help in stabilizing the
learning process and allow gradients to
flow without diminishing or excessively
amplifying through the network during
backpropagation.

• Feed Forward: This is a simple neu-
ral network applied to each position sepa-
rately and identically. It transforms the

output of the attention layer to help
in predicting the next word in the se-
quence.

• Output Embedding (shifted right): This is often used in the context of decoder parts
of the transformer in sequence-to-sequence models, where the output at each time
step becomes the input to the next step after being shifted right.

• Softmax: The final layer in the transformer output that converts the logits from
the last linear layer into probabilities, which are used to predict the next word in the
sequence.

CHAPTER 1. GENERATIVE AI- p.18/25 Dr Nikos Bakas



1.14 Big Data

Large language models can be trained on datasets containing trillions of words,
which translates to roughly tens of trillions of tokens.

• 100 tokens are approximately equal to 75 words. Tokens can be a whole word,
but they can also be smaller parts of words or even punctuation marks.

• Wikipedia comprises approximately 3 billion tokens.

• The British Library has around 14 million books. Assuming an average book has
50,000 tokens (words x 1.3 tokens/word), we get a very rough estimate of 700 billion
tokens (14 million books * 50,000 tokens/book). It spans 9.6 kilometres (6mi) of
shelf space. https://en.wikipedia.org/wiki/British_Library

CHAPTER 1. GENERATIVE AI- p.19/25 Dr Nikos Bakas



1.15 This is a small amount of books!

CHAPTER 1. GENERATIVE AI- p.20/25 Dr Nikos Bakas



1.16 Model and Token Size
Assuming a model with 1.3 billion parameters and calculations done in mixed preci-
sion (float16), we obtain:

Model Size:

Number of parameters = 1.3× 109 (1.1)
Memory per parameter (float16) = 2 bytes (1.2)

Total model memory ≈ 2.42GB (1.3)
Token Capacity

Memory per token ≈ 95.37KB (1.4)
(including embeddings and activations’ calculations, back-propagation, etc.)

Total available memory for tokens ≈ 29.58GB (1.5)
Estimated maximum number of tokens ≈ 310, 154 (1.6)

Hence, a 32 GB GPU can roughly process the 1/10,000,000 of an LLM’s dataset for a
model with 1,3 billion parameters (only).

The previous calculations regard the processing of a single batch, not the entire dataset. The estimation for the number of

tokens (approximately 310,154 tokens) that can fit into the GPU memory is based on processing these tokens in a single batch

on a 32 GB GPU. Advanced subword tokenization (like BPE or SentencePiece), help handle the vocabulary size more efficiently

than traditional tokenization methods.

CHAPTER 1. GENERATIVE AI- p.21/25 Dr Nikos Bakas



.

1.17 EuroHPC JU Access Call for AI and Data-Intensive Applica-
tions

Call Details:
The EuroHPC JU AI and Data-Intensive

Applications Access call aims to support ethi-
cal artificial intelligence, machine learn-

ing, and in general, data-intensive ap-
plications, with a particular focus on foun-
dation models and generative AI (e.g.
large language models).

The call is intended to serve industry
organizations, small to medium enter-
prises (SMEs), startups, as well as pub-
lic sector entities, requiring access to su-
percomputing resources to perform artificial
intelligence and data-intensive activities.

https://eurohpc-ju.europa.eu/eurohpc-ju-access-call-ai-and-data-intensive-applications_en

CHAPTER 1. GENERATIVE AI- p.22/25 Dr Nikos Bakas

https://eurohpc-ju.europa.eu/eurohpc-ju-access-call-ai-and-data-intensive-applications_en


CHAPTER 1. GENERATIVE AI- p.23/25 Dr Nikos Bakas



CHAPTER 1. GENERATIVE AI- p.24/25 Dr Nikos Bakas



Thank you!

Introduction to Large Language Models
Dr Nikos Bakas

https://eurocc-greece.gr/

25

https://eurocc-greece.gr/

	Generative AI

