
Introduction to modern graphics processing units (GPU) architecture

and programming in CUDA

Xenofon Trompoukis, Dr Mechanical engineer

School of Mechanical Engineering, NTUA,
Parallel CFD & Optimization Unit

email: xeftro@gmail.com

Why GPUs ?

❑ Parallel processing units

❑ High floating-point operations rate (double and single

precision arithmetic)

❑ GPU embedded, low latency, RAM

❑ Various programming environments

❑ Low cost & energy consumption based on their

computational power

Why GPUs ?

❑ Parallel processing units

❑ High floating-point operations rate (double

and single precision arithmetic)

❑ GPU embedded, low latency, RAM

❑ Various programming environments

❑ Low cost & energy consumption based on

their computational power

Why GPUs ?

❑ Parallel processing units

❑ High floating-point operations rate (double

and single precision arithmetic)

❑ GPU embedded, low latency, RAM

❑ Various programming environments

❑ Low cost & energy consumption based on

their computational power

Why GPUs ?

❑ Parallel processing units

❑ High floating-point operations rate (double

and single precision arithmetic)

❑ GPU embedded, low latency, RAM

❑ Various programming environments

❑ Low cost & energy consumption based on

their computational power

❑ Parallel processing units

❑ High floating-point operations rate (double and single

precision arithmetic)

❑ GPU embedded, low latency, RAM

❑ Various programming environments

❑ Low cost & energy consumption based on their

computational power

OpenCL: Cross platform implementation

- C++

CUDA: Developed by NVIDIA,

specialized for NVIDIA GPUs

- C++

- FORTRAN

- Python

Why GPUs ?

Why GPUs ?

❑ Parallel processing units

❑ High floating-point operations rate (double and single

precision arithmetic)

❑ GPU embedded, low latency, RAM

❑ Various programming environments

❑ Low cost & energy consumption based on their

computing power

Why GPUs ?

❑ Parallel processing units

❑ High floating-point operations rate (double and single precision

arithmetic)

❑ GPU embedded, low latency, RAM

❑ Various programming environments

❑ Low cost & energy consumption based on their computational

power

Why GPUs ?

❑ 1 sub-domain per GPU.

❑MPI → data transactions between

GPUs on different computational

nodes.

❑ Shared “host” memory → data

transactions between GPUs on the

same node.

Why GPUs ?

GPUs = Powerful, massively parallel CPU co-processors

GPU Architecture
Thread: Fundamental computational unit

❑ GPU threads execute the same fragment of code (kernel) using

different data (SIMT: Single Instruction Multiple Threads)

accessing the same (device) memory.

❑ GPU threads are grouped in warps (i.e. group of 32 threads)

and are executed at GPU multiprocessors.

❑ GPU threads of the same warp are executed in parallel in a

synchronous manner.

Block: Cluster of warps

❑ Each multiprocessor can execute at least a thread

block.

❑ GPU block threads, which belong to different warps,

are executed in parallel and asynchronous manner.

❑ Synchronization and fast data transactions through

shared memory

Grid: Cluster of thread blocks

Thread

Thread Block

Grid

✓ A FERMI GPU can execute up to 24,576 threads in parallel

✓ The programmer defines the thread block and grid

dimensions

Hello World

#include <cuda.h>

__global__ void helloGPU();

helloGPU<<<GridDim, BlockDim>>>();

Host-Device Synchronization

compile

nvcc –arch=sm_80 *.cu –o *.exe –lcuda – lcudart

compiler GPU

Compute

Capability

Source

code

executable libraries

GPU Architecture

L2 cache

Shared

cache

cache cache

Shared

cache

cache cache

Shared

cache

cache cache

Shared

cache

cache cache

Shared

cache

cache cache

Shared

cache

cache cache

Shared

cache

cache cache

Shared

cache

cache cache

Shared

cache

cache cache

Shared

cache

cache cache

Shared

cache

cache cache

Shared

cache

cache cache

Shared

cache

cache cache

Shared

cache

cache cache

Shared

cache

cache cache

Shared

cache

cache cache

Fermi:16 multiprocessors

GPU Architecture

Shared memory

L1 cache

cache cache

❑ 32 (CUDA) cores

❑ 4 Special Function Units (SFUs)

❑ 2 warp schedulers

❑ Shared memory

❑ cache memory (L1, constant & texture)

❑ 32768 32-bit registers

1 FERMI multiprocessor consists of:

GPU Architecture

❑ Thread blocks are “split” into the multiprocessors based on kernel’s requirements on registers and

shared memory. Then, the warp schedulers of each multiprocessor organize block threads into warps.

❑ The best performing block size is related only with the GPU architecture and kernel requirements

not with the application itself.

Vector summation

Vector summation

Vector summation

Piece of advice

❑Avoid threads running in parallel to write at the

same memory position (memory conflict).

❑ Threads from the same warp should access to the

same device memory segment, since access to a

128-byte device memory segment can be performed

within a single memory transaction.

Use Shared, constant and/or texture memory when

possible.

❑ Be careful with if statements – avoid thread

divergence.

❑ If it is possible, use single precision instead of

double precision arithmetic. In Fermi GPUs, single

precision operation rate is 2x higher than the double

precision one.

❑ Use all the available resources (GPU + CPU).

Piece of advice

warp
Global Memory

warp
Global Memory

❑Avoid threads running in parallel to write at the

same memory position (memory conflict).

❑ Threads from the same warp should access to the

same device memory segment, since access to a

128-byte device memory segment can be performed

within a single memory transaction.

Use Shared, constant and/or texture memory when

possible.

❑ Be careful with if statements – avoid thread

divergence.

❑ If it is possible, use single precision instead of

double precision arithmetic. In Fermi GPUs, single

precision operation rate is 2x higher than the double

precision one.

❑ Use all the available resources (GPU + CPU).

Piece of advice

❑Avoid threads running in parallel to write to the

same memory position (memory conflict).

❑ Threads from the same warp should access to the

same device memory segment, since access to a

128-byte device memory segment can be performed

within a single memory transaction.

Use Shared, constant and/or texture memory when

possible.

❑ Be careful with if statements – avoid thread

divergence.

❑ If it is possible, use single precision instead of

double precision arithmetic. In Fermi GPUs, single

precision operation rate is 2x higher than the double

precision one.

❑ Use all the available resources (GPU + CPU).

Piece of advice

MPA

SPA DPA

❑Avoid threads running in parallel to write to the

same memory position (memory conflict).

❑ Threads from the same warp should access to the

same device memory segment, since access to a

128-byte device memory segment can be performed

within a single memory transaction.

Use Shared, constant and/or texture memory when

possible.

❑ Be careful with if statements – avoid thread

divergence.

❑ If it is possible, use single precision instead of

double precision arithmetic. In Fermi GPUs, single

precision operation rate is 2x higher than the double

precision one.

❑ Use all the available resources (GPU + CPU).

Piece of advice

GPU

CPU

❑Avoid threads running in parallel to write to the

same memory position (memory conflict).

❑ Threads from the same warp should access to the

same device memory segment, since access to a

128-byte device memory segment can be performed

within a single memory transaction.

Use Shared, constant and/or texture memory when

possible.

❑ Be careful with if statements – avoid thread

divergence.

❑ If it is possible, use single precision instead of

double precision arithmetic. In Fermi GPUs, single

precision operation rate is 2x higher than the double

precision one.

❑ Use all the available resources (GPU + CPU).

Dot product

Dot product

Summary

❑ __global__ : GPU function launched by the host (kernel)

❑ __device__ : GPU function launched by the device

❑ __host__ : CPU function launched by the host

❑ __shared__ : Variable in the shared memory

❑ __syncthreads() : Block thread synchronization

❑ cudaDeviceSynchronize() : CPU-GPU synchronization

❑ cudaError_t cudaMalloc(void** ptr, size_t size);

❑ cudaError_t cudaFree(void* ptr);

❑ cudaError_t cudaMemcpy(void* destination, void* source, size_t size, cudaMemcpyKind kind);

Matrix-matrix multiplication

Matrix-matrix multiplication

Matrix-matrix multiplication

Matrix-matrix multiplication

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

