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❑ Parallel processing units
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❑ GPU embedded, low latency, RAM

❑ Various programming environments

❑ Low cost & energy consumption based on their 
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OpenCL: Cross platform implementation

- C++

CUDA: Developed by NVIDIA, 

specialized for NVIDIA GPUs

- C++

- FORTRAN

- Python
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Why GPUs ?

❑ 1 sub-domain per GPU.

❑MPI → data transactions between 

GPUs on different computational 

nodes.

❑ Shared “host” memory → data 

transactions between GPUs on the 

same node.



Why GPUs ?

GPUs = Powerful, massively parallel CPU co-processors



GPU Architecture
Thread: Fundamental computational unit

❑ GPU threads execute the same fragment of code (kernel) using 

different data (SIMT: Single Instruction Multiple Threads) 

accessing the same (device) memory.

❑ GPU threads are grouped in warps (i.e. group of 32 threads) 

and are executed at GPU multiprocessors.

❑ GPU threads of the same warp are executed in parallel in a 

synchronous manner.

Block: Cluster of warps

❑ Each multiprocessor can execute at least a thread 

block.

❑ GPU block threads, which belong to different warps, 

are executed in parallel and asynchronous manner.

❑ Synchronization and fast data transactions through 

shared memory

Grid: Cluster of thread blocks

Thread

Thread Block

Grid

✓ A FERMI GPU can execute up to 24,576 threads in parallel

✓ The programmer defines the thread block and grid 

dimensions



Hello World

#include <cuda.h>

__global__ void helloGPU();

helloGPU<<<GridDim, BlockDim>>>();

Host-Device Synchronization



compile

nvcc   –arch=sm_80   *.cu   –o   *.exe   –lcuda  – lcudart

compiler GPU 

Compute 

Capability

Source 

code

executable libraries



GPU Architecture
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Fermi:16 multiprocessors



GPU Architecture

Shared memory

L1 cache

cache cache

❑ 32 (CUDA) cores

❑ 4 Special Function Units (SFUs)

❑ 2 warp schedulers

❑ Shared memory

❑ cache memory (L1, constant & texture)

❑ 32768 32-bit registers

1 FERMI multiprocessor consists of:



GPU Architecture

❑ Thread blocks are “split” into the multiprocessors based on kernel’s requirements on registers and 

shared memory. Then, the warp schedulers of each multiprocessor organize block threads into warps.

❑ The best performing block size is related only with the GPU architecture and kernel requirements 

not with the application itself.
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Piece of advice

❑Avoid threads running in parallel to write at the 

same memory position (memory conflict).

❑ Threads from the same warp should access to the 

same device memory segment, since access to a 

128-byte device memory segment can be performed 

within a single memory transaction.

Use Shared, constant and/or texture memory when 

possible.

❑ Be careful with if statements – avoid thread 

divergence.

❑ If it is possible, use single precision instead of 

double precision arithmetic. In Fermi GPUs, single 

precision operation rate is 2x higher than the double 

precision one.

❑ Use all the available resources (GPU + CPU).
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Piece of advice

GPU

CPU

❑Avoid threads running in parallel to write to the 

same memory position (memory conflict).

❑ Threads from the same warp should access to the 

same device memory segment, since access to a 

128-byte device memory segment can be performed 

within a single memory transaction.

Use Shared, constant and/or texture memory when 

possible.
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divergence.
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double precision arithmetic. In Fermi GPUs, single 

precision operation rate is 2x higher than the double 

precision one.

❑ Use all the available resources (GPU + CPU).
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Dot product



Summary

❑ __global__ : GPU function launched by the host (kernel)

❑ __device__ : GPU function launched by the device

❑ __host__     : CPU function launched by the host

❑ __shared__ : Variable in the shared memory

❑ __syncthreads() : Block thread synchronization

❑ cudaDeviceSynchronize() : CPU-GPU synchronization

❑ cudaError_t cudaMalloc(void** ptr, size_t size);

❑ cudaError_t cudaFree(void* ptr);

❑ cudaError_t cudaMemcpy(void* destination, void* source, size_t size, cudaMemcpyKind kind);
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