
Introduction to High-Performance Computing
Dr Nikos Bakas nibas@grnet.gr

National Infrastructures for Research and Technology - GRNET

https://eurocc-greece.gr/

- p.1/83 Dr Nikos Bakas

nibas@grnet.gr
https://eurocc-greece.gr/

- p.2/83 Dr Nikos Bakas

Contents

1 General Concepts of High Performance Computing (HPC) 5

2 Scaling 15

3 History of HPC 29

4 Programming Models in HPC 39

5 State of the art machines 47

6 EuroCC Services 53

7 Apply for Access at EuroHPC JU 59

8 Resources 81

3

CONTENTS- p.4/83 Dr Nikos Bakas

Chapter 1

General Concepts of High Performance Computing
(HPC)

1.1 Definition of HPC

High Performance Computing (HPC) refers
to the practice of aggregating computing
power in a way that delivers much greater
performance than one could get out of a typ-
ical desktop computer or workstation in order
to solve large problems in science, engineer-
ing, and business. HPC systems have the
ability to process data and perform complex
calculations at high speeds, which is essen-

tial for various research and industrial tasks.

5

1.2 Importance of HPC
The advancement and breakthroughs in many scientific domains are often attributed
to the computational power available through HPC. These include:

• Weather forecasting and climate research

• Molecular modeling and simulations in pharmaceutical research

• Cryptography and cybersecurity

• Fluid dynamics calculations for designing vehicles, aircraft, etc.

• Energy exploration and seismic analysis

• Simulations with Finite Elements

• High-Performance Data Analytics

• Machine Learning and Artificial Intelligence

HPC is critical in these fields because it enables the simulation and analysis of complex
systems and phenomena at a scale or speed that is not possible with standard
computing resources.

CHAPTER 1. GENERAL CONCEPTS OF HIGH PERFORMANCE COMPUTING (HPC)- p.6/83 Dr Nikos Bakas

1.3 Components of an HPC System
An HPC system typically involves:

• Compute Nodes: These are the individual servers that provide the processing power.
Each node contains one or more CPUs (Central Processing Units) or GPUs (Graphics
Processing Units), and often both.

• Networking: A high-speed network interconnects the compute nodes, allowing for rapid
communication and data transfer between nodes.

• Storage: Fast, large-capacity storage systems are required for input/output (I/O) oper-
ations, storing the data that is generated and used by applications running on the HPC
system.

• Software: This includes the operating systems, programming models, and applications
and tools specific to HPC tasks.

CHAPTER 1. GENERAL CONCEPTS OF HIGH PERFORMANCE COMPUTING (HPC)- p.7/83 Dr Nikos Bakas

1.4 Parallel Computing

1.4.1 Instructions

An instruction in the context of computing and processors refers to a basic command
that tells the computer’s processor to perform a specific operation.

These operations can include:
• arithmetic (like addition, subtraction,

multiplication, and division),

• data movement (such as loading data
from memory into a register1. or storing
data from a register into memory),

• logical operations (like AND, OR,
NOT, XOR), and

• control operations (such as jumping to
a different part of the program, condi-
tional execution, and calling functions).

A program, whether it’s a simple application or a complex operating system, is essen-
tially a collection of instructions that the CPU executes.

In essence, instructions enable software to interact with hardware, providing a bridge be-
tween high-level programming languages and the binary operations that a CPU can directly
execute. At the lowest level, the “language” the CPU truly understands is binary (1s and
0s). Each operation (like addition) is represented by a specific pattern of these binary digits.
These sequences of bits directly trigger the electrical circuits within the CPU to carry out
operations.

1Registers are super-fast storage locations directly within the CPU. They are very limited in number and size (holding only a few bytes)

CHAPTER 1. GENERAL CONCEPTS OF HIGH PERFORMANCE COMPUTING (HPC)- p.8/83 Dr Nikos Bakas

1.4.2 CPUs, Cores and Threads

• Core: a physical processing unit within a computer’s central processing unit (CPU) that
can independently execute instructions.

• Thread: a sequence of instructions that can be executed independently by a CPU. A
CPU with multiple threads can work on multiple tasks in parallel, by using hyper-thread-
ing technology. This allows a single core to work on multiple threads concurrently.

CHAPTER 1. GENERAL CONCEPTS OF HIGH PERFORMANCE COMPUTING (HPC)- p.9/83 Dr Nikos Bakas

1.4.3 Threads: Software vs Hardware

Threads bridge the distance between software and hardware.

• Hyper-threading: Modern CPUs can support hyper-threading, where one physical
core appears as multiple logical cores to the operating system. This creates the illusion
of parallel execution.

• Execution on Cores: Threads are ultimately executed by the physical cores of a
CPU.

• Number of Threads per Core: Traditionally, a single core could only execute one
thread at a time. However, with hyper-threading technology, the number of threads
supported by a core with hyper-threading typically ranges from 2 to 4, depending on
the CPU architecture.

• Operating System Management: The operating system’s kernel creates, schedules,
and manages threads. It views threads as units of execution.

Threads are fundamentally a software abstraction primarily managed by the oper-
ating system. designed to optimize multitasking. However, they rely heavily on
underlying hardware features for efficient implementation.

CHAPTER 1. GENERAL CONCEPTS OF HIGH PERFORMANCE COMPUTING (HPC)- p.10/83 Dr Nikos Bakas

1.4.4 Tasks, Threads, and Cores

• A task, is a program instance submitted to a job scheduler like Slurm. It manages
allocation of cores and memory for parallel execution.

A task can consist of multiple threads, which can be scheduled to execute concurrently
on one or more cores depending on the system configuration and the operating system’s
thread scheduler.

1.5 CPUs, GPUs and Nodes
• A cluster divided into CPU and GPU partitions, each with dedicated RAM and CPUs/GPUs.

• Individual user space is allocated on the hard drive for storage.

• A CPU node highlighted - multiple CPU nodes exist within the CPU partition.

• User’s allocation in the GPU partition is indicated, showing a combination of RAM and
GPU resources assigned to a user.

CHAPTER 1. GENERAL CONCEPTS OF HIGH PERFORMANCE COMPUTING (HPC)- p.11/83 Dr Nikos Bakas

CHAPTER 1. GENERAL CONCEPTS OF HIGH PERFORMANCE COMPUTING (HPC)- p.12/83 Dr Nikos Bakas

1.5.1 Sample Slurm Script

Sample slurm script to allocate 4 nodes, with 2 * 64 cores each, with hyperthreading (2 threads
per core). Check also https://slurm.schedmd.com/sbatch.html.

#!/bin/bash

#SBATCH --job-name=python_job # Descriptive job name
#SBATCH --nodes=4 # Request 4 compute nodes
#SBATCH --ntasks-per-node=64 # 64 tasks per node
#SBATCH --cpus-per-task=2 # Allocate 2 CPUs per task (for hyp ⌋

erthreading)↪→

#SBATCH --time=04:00:00 # Set a job time limit of 4 hours
#SBATCH --partition=highmem # Submit to a partition suitable fo ⌋

r your needs↪→

#SBATCH --mem=512GB # Example: Request 512GB memory per ⌋

 node↪→

Load necessary modules
module load python/3.9 # Example: Load Python 3.9 module
Run your Python script
mpirun -np 256 python my_python_script.py

CHAPTER 1. GENERAL CONCEPTS OF HIGH PERFORMANCE COMPUTING (HPC)- p.13/83 Dr Nikos Bakas

https://slurm.schedmd.com/sbatch.html

1.6 Types of Parallel Computing
HPC relies heavily on parallel computing, where multiple computational tasks are carried
out simultaneously to increase the computational speed. Parallel computing, in the context
of HPC, can be explained on different levels:

• Bit-Level Parallelism: Refers to the ability of a processor to perform operations on
different bits or sets of bits simultaneously. For example, a 64-bit processor can operate
on 64 bits at a time, thereby performing operations faster than a 32-bit processor, which
can only handle 32 bits at once.

• Instruction-Level Parallelism: Refers to the ability of a CPU to execute multiple in-
structions simultaneously, such as adding numbers and loading files simultaneously. ILP
is focused on executing multiple instructions of a single thread in parallel at the hardware
level.

• Data Parallelism: Involves performing the same operation on each element of a larger
data set in parallel. The same operation (like adding 2) is done at the same time across
many pieces of data, often using vectorized computations. This is efficient for operations
on large arrays or matrices.

• Task Parallelism: Different tasks are distributed across processors, which may then
execute different instructions at the same time. In task parallelism, different computers
or processors handle different jobs simultaneously, which can speed up complex projects
with multiple distinct tasks.

CHAPTER 1. GENERAL CONCEPTS OF HIGH PERFORMANCE COMPUTING (HPC)- p.14/83 Dr Nikos Bakas

Chapter 2

Scaling

15

2.1 Why Parallelization Matters

The following is an example code for the brightness increase of 1_000_000 Images:

using Base.Threads, Images

image_paths = ["image1.jpg", "image2.jpg", ..., "image1_000_000.jpg"]

brightness_increase = 50 # Define your brightness increase

@threads for path in image_paths
image = load_image(path) # Load the image
adjusted_image = clamp.(image .+ brightness_increase, 0, 255) ⌋

Adjust brightness↪→

save_image(adjusted_image, "adjusted_$path") # Save the adjust ⌋

ed image↪→

end

The code comprises commands for:

• Parallelism: Distributes image processing across threads, making 1,000,000 images as
fast to process as one, assuming sufficient resources.

• Vectorized Computations: Modern processors use vectorized instructions (SIMD) to
operate on multiple data points simultaneously within a single instruction.

CHAPTER 2. SCALING- p.16/83 Dr Nikos Bakas

Computational Complexity: Turning an O(n) operation into an effective O(1) op-
eration (assuming perfect parallelization zero overhead).

• Perfect Parallelization is Impractical: Real-world scenarios often have dependencies
between loop iterations or require synchronization, making perfect parallelization difficult
to achieve.

• Overhead Always Exists (Almost): Even the most optimized systems have some
overhead associated with thread management. While it might be minimal, it’s not truly
zero.

CHAPTER 2. SCALING- p.17/83 Dr Nikos Bakas

2.2 Scalability in HPC systems

Scalability in High Performance Computing (HPC) systems refers to the ability of a
system to effectively utilize increasing numbers of processors or compute resources to perform
a task. A scalable HPC system is able to handle growing workloads by adding more resources,
such as CPUs, GPUs, or memory, while maintaining efficiency and performance.

Two key aspects of scalability are:

• Horizontal scalability: This is the capability to increase performance by adding more
nodes or machines to the system. It implies a distributed architecture where each node
functions as a part of a larger coordinated system.

• Vertical scalability: This involves increasing the capacity of an existing machine, such
as adding more CPUs, memory, or storage to handle larger workloads.

A scalable HPC system should display improved performance with minimal overhead as
resources are added. The main measures for this are efficiency, speedup, and throughput.

Example:
Assume an HPC system can execute a task in 20 hours using 5 nodes. If scalability is

perfect, when we increase the nodes from 5 to 10, the time to complete the same task should
be reduced ideally to 10 hours. However, due to various overheads and inefficiencies, the
time might only reduce to 12 hours, which represents good but imperfect scalability.
CHAPTER 2. SCALING- p.18/83 Dr Nikos Bakas

2.3 Speedup
Speedup in the context of HPC is a metric used to quantify the performance improvement
of a parallel system compared to a serial one. It is typically expressed as:

Speedup =
Execution Time on Single Processor

Execution Time on Multiple Processors
An ideal speedup is linear, meaning the speedup is equal to the number of proces-

sors. This, however, is rarely the case due to overheads inherent in parallel systems.
Example:
Let’s say a computational task runs for 80 hours on a single processor. Running the same

task on a parallel system with 4 processors takes 22 hours. Thus, the speedup is:

Speedup =
80
22

≈ 3.64 < 4

This represents a sub-linear speedup, indicating that there are likely some inefficiencies
in the parallel processing.

CHAPTER 2. SCALING- p.19/83 Dr Nikos Bakas

2.4 Parallelization Efficiency
Parallelization efficiency, also known as parallel efficiency, is a measure of how efficiently
a computational task runs in parallel compared to serially. It is defined as the ratio of the
speedup achieved to the number of processors used:

Parallelization Efficiency =
Speedup

Number of Processors
Values of parallelization efficiency range from 0 (no benefit from parallelization) to 1

(perfect linear speedup). In reality, efficiencies are less than 1 due to overheads like
communication between processors, synchronization, and non-uniform memory
access delays.

Example:
If a task takes 100 hours to complete on a single processor and 15 hours to complete on 8

processors, the speedup is:

Speedup =
100
15

≈ 6.67

The parallelization efficiency would be:

Parallelization Efficiency =
6.67
8

≈ 0.83

Here, an efficiency of 0.83 means the system is utilizing the parallel processors fairly
efficiently, but there is still some room for improvement.

CHAPTER 2. SCALING- p.20/83 Dr Nikos Bakas

2.5 Scaling Tests
Scaling tests in HPC are experiments designed to assess the scalability of a system. Two
common types of scaling tests are:

• Strong Scaling Test: Measures the system’s ability to reduce the time to solve a fixed-
size problem as more resources are added.

• Weak Scaling Test: Measures how the solution time changes when both the problem
size and the system size increase proportionally.

These tests are crucial for understanding the performance characteristics of an HPC system
and predict its behavior with different workloads and configurations.

CHAPTER 2. SCALING- p.21/83 Dr Nikos Bakas

2.6 Strong Scaling
Strong scaling measures the system’s capacity to speed up a fixed-size problem by
applying more computational resources. The aim is to reduce the total execution time.
It is defined as:

Strong Scaling =
Execution Time with Single Processor

Execution Time with Multiple Processors
Strong scaling is often limited by the portion of the program that cannot be parallelized,

which affects the overall speedup.
Example: If the time to process a dataset is 120 minutes on one core, and it’s 40 minutes

on 4 cores, then the strong scaling achieved is:

Strong Scaling =
120
40

= 3

This indicates a threefold speedup, which is less than the ideal factor of 4, and suggests
the presence of some non-parallelizable parts or overheads.

Strong scaling and speedup are both related to performance improvement in parallel
computing, but they have distinct focuses:

• Speedup: Speedup is a more general term that refers to how much faster a parallel
program executes compared to its sequential counterpart.

• Strong Scaling: Strong scaling specifically examines how well a system can reduce the
execution time for a fixed-size problem by adding more processing power.

CHAPTER 2. SCALING- p.22/83 Dr Nikos Bakas

2.7 Amdahl’s Law
Amdahl’s Law provides a theoretical maximum speedup that can be achieved using
parallel processing. It takes into account the fraction of a program that is serial and
cannot be parallelized. The law is expressed as:

Speedup =
1

(1− P) + P
N

where P is the parallelizable portion of the task, and N is the number of processors.
Example: If 90% of a program can be parallelized (P = 0.9), and it’s run on 10 proces-

sors, the theoretical maximum speedup according to Amdahl’s law would be:

Speedup =
1

(1− 0.9) + 0.9
10

=
1

0.1 + 0.09
=

1

0.19
≈ 5.26

According to Amdahl’s Law, as N approaches infinity, the speedup approaches 1
1−P , mean-

ing the maximum speedup is governed by the serial fraction of the task. This can be math-
ematically represented as:

lim
N→∞

Speedup = lim
N→∞

1

(1− P) + P
N

=
1

1− P

where P is the parallelizable portion of the task.

This law is a critical consideration in the design and optimization of algorithms
for parallel processing, suggesting that efforts to reduce the serial portion of
programs can significantly enhance performance gains from parallelization.

CHAPTER 2. SCALING- p.23/83 Dr Nikos Bakas

2.8 Weak Scaling
Weak scaling is a technique employed in High-Performance Computing (HPC) to utilize
additional processing power for handling proportionally larger problems. It maintains a
constant workload per processor while simultaneously increasing both the number
of processors (P) and the problem size. This approach is particularly beneficial for
applications that exhibit:

• Memory-boundedness: These applications require more memory than a single node
can provide. Weak scaling allows distribution across multiple nodes, effectively increasing
available memory.

• Inherent parallelism: These applications are well-suited for breaking down into inde-
pendent tasks that can be executed concurrently on multiple processors.

While there isn’t a single, universally accepted formula for weak scaling, one common
metric stems from Gustafson’s Law.

The available memory and its bandwidth play a critical role in determining the actual
scalability and performance. RAM is not included in Gustafson’s; however, it is
important to consider it alongside computational resources when planning for scaling,
as memory constraints can become bottlenecks even if the computational resources
would allow for further scaling.

CHAPTER 2. SCALING- p.24/83 Dr Nikos Bakas

2.9 Gustafson’s Law
Gustafson’s Law addresses a key limitation of Amdahl’s Law by considering the scaling of
problem size with the number of processors in a parallel computing environment. It
suggests that as we increase the number of processors, we can also increase the problem size
to fully utilize the additional computing power, making it a more realistic model for many
practical applications of parallel computing.

The law is formalized by the formula:

S = (1− α) + αP (2.1)

where:

• S is the theoretical speedup of the execution of the whole task;

• α (0 ≤ α ≤ 1) is the proportion of the task that can benefit from parallelization (i.e.,
the parallel portion);

• P is the number of processors;

• (1 − α) represents the proportion of the task that must be executed sequentially and
does not benefit from parallelization.

In essence, Amdahl’s Law sets a theoretical limit for a fixed task, while Gustafson’s Law
explores how we can push that limit by adapting the workload for parallel processing.
Amdahl’s Law concerns strong scaling, while Gustafson’s Law regards weak.

CHAPTER 2. SCALING- p.25/83 Dr Nikos Bakas

Consider a scenario where a task can be divided into a part that benefits from paralleliza-
tion and a part that does not. Let’s say 70% of the task can be parallelized, while
the remaining 30% must be executed sequentially. If we use 8 processors, we can
apply Gustafson’s Law to calculate the theoretical speedup.

Given:

• α = 0.7 (70% of the task is parallelizable),

• P = 8 processors.

Substituting the given values into Gustafson’s Law:

S = (1− 0.7) + 0.7× 8 (2.2)

S = 0.3 + 5.6 = 5.9 (2.3)

Thus, with 8 processors and 70% of the task being parallelizable, the theoretical speedup
of the execution of the whole task is 5.9 times faster than executing the task on a single
processor.

This law provides a theoretical model for understanding how computational work can
be scaled with the addition of processors, under the assumption that increasing the
number of processors allows for a proportional increase in the problem size
that can be handled efficiently.

CHAPTER 2. SCALING- p.26/83 Dr Nikos Bakas

2.10 Performance Metrics in HPC
There are several metrics to evaluate HPC performance:

FLOPS (Floating Point Operations
Per Second): A measure of a computer’s
performance, especially in fields of scientific
computations that require floating-point cal-
culations.

• Latency: The time taken for a message
to travel from one node to another. E.g.:
5 milliseconds between nodes.

• Bandwidth: The rate at which data can
be transferred over the network. E.g.: 100
Gbps in a high-speed network.

• Scalability: The ability of the HPC sys-
tem to maintain performance as more
computational resources are added.

Operations Name Abbreviation
1 FLOPS FLOPS
103 Kilo FLOPS KFLOPS
106 Mega FLOPS MFLOPS
109 Giga FLOPS GFLOPS
1012 Tera FLOPS TFLOPS
1015 Peta FLOPS PFLOPS
1018 Exa FLOPS EFLOPS

Table 2.1: Magnitudes of FLOPS (Floating Point Operations Per Second)

FLOPS are widely used to assess state-of-the-art Supercomputers.

CHAPTER 2. SCALING- p.27/83 Dr Nikos Bakas

CHAPTER 2. SCALING- p.28/83 Dr Nikos Bakas

Chapter 3

History of HPC

The evolution of HPC is characterized by significant milestones that mark the techno-
logical advancements over the years.

3.1 The Early Days: 1960s
The concept of HPC can be traced back to the supercomputers of the 1960s. The first
supercomputer is considered the CDC 6600, designed by Seymour Cray at Control Data
Corporation. It was able to perform three millions of floating-point operations per second
(3 MFLOPS), setting the standard for performance at the time.

29

3.2 Vector Processors and the Rise of Cray: 1970s-1980s
In the 1970s and 1980s, HPC progressed with the introduction of vector processors, which
could perform a single operation on a large set of data simultaneously (SIMD). Seymour
Cray continued to be a pioneer in this area, developing the Cray-1 (160 MFLOPS), Cray
X-MP (200 MFLOPS) and Cray-2 systems (1.9 GFLOPS), with Cray-2 becoming
the fastest machine in the world in 1985.

3.3 Parallel Processing: 1990s
With the rise of parallel processing in the 1990s, HPC systems started to be built using
multiple processors working in parallel to solve a problem. This period saw the development
of the Massively Parallel Processors (MPPs) such as the Thinking Machines CM-5,
which featured hundreds or even thousands of processors interconnected in various topologies
to achieve high computational speed. A CM-5 with 1024 processors could achieve a peak
performance of approximately 131 GFLOPS (1993 TOP500 list).

MPPs relied on expensive, custom-designed hardware and specialized interconnects
for maximum performance, while Beowulf clusters used commodity PCs and stan-
dard networking for cost-efficiency and scalability. The Beowulf concept has been
tremendously influential in the development of modern supercomputers.

CHAPTER 3. HISTORY OF HPC- p.30/83 Dr Nikos Bakas

3.4 The Advent of Clustering: Late 1990s and 2000s
The late 1990s and 2000s witnessed the increased use of computer clusters for HPC.
Clusters are groups of loosely or tightly connected computers that work together so that, in
many respects, they can be viewed as a single system. The Beowulf Project is an example of
a Beowulf cluster, which uses inexpensive, commodity hardware for high-performance
computations, therefore democratizing access to HPC by reducing costs. The first Beowulf
cluster (1994) comprised 16 i486 DX4 processors and reached 500 MFLOPS.

The performance of a Beowulf cluster can vary widely because Beowulf clusters are rather
a concept for building high-performance parallel computing systems using stan-
dard, off-the-shelf components. Hence, gradually, their performance started increasing to
TFLOPS and beyond.

Taking an Intel Core i9 processor with 10 cores, a conservative clock speed of 3.0 GHz,
and assuming it can perform 16 FLOPS per cycle per core, the theoretical peak perfor-
mance would be:

10 cores × 3.0GHz × 16

FLOP
cycle

core
= 480GFLOPS

CHAPTER 3. HISTORY OF HPC- p.31/83 Dr Nikos Bakas

3.5 Petaflops and Beyond: 2010s

By the 2010s, the HPC field had advanced into the petaflop era, where systems could per-
form 1015 floating-point operations per second. An example is the Cray’s XT5 "Jaguar"
system at the Oak Ridge National Laboratory in the United States, which in 2009 was the
fastest in the world (1.75 petaflops). In this era, accelerators such as General-Purpose
Graphics Processing Units (GPGPUs) and co-processors, like those from Intel’s Xeon
Phi line, became integral to achieving high performance.

3.6 Exascale Computing: The Next Frontier

Currently, the HPC community is on the brink of reaching exascale computing, with systems
capable of performing at least 1018 operations per second. This new frontier promises to
facilitate innovations across multiple disciplines, from climate modeling and precision
medicine to artificial intelligence and the analysis of massive datasets for scientific research.
The race to build the first exascale computer is a testament to the continual evolution of
HPC and its key role in science and technology.

These milestones not only reflect increases in raw computational power but also sig-
nify advancements in algorithms, data storage, network communication, and
parallel software development. HPC has evolved from a tool for a select few sci-
entific applications to a fundamental resource for a broad range of disciplines,
influencing both academic research and industrial innovation. This aligns with the
scope of the EuroCC project.

CHAPTER 3. HISTORY OF HPC- p.32/83 Dr Nikos Bakas

3.7 Moore’s Law

A transistor is a semiconductor device used to amplify or switch electronic signals and
electrical power. It is one of the basic building blocks of modern electronic devices. In essence,
transistors can be understood as a type of switch that controls the flow of electricity in a
circuit.

An integrated circuit (IC), sometimes called a microchip, is a semiconductor wafer
on which thousands or millions of tiny resistors, capacitors, and transistors are fabricated.
An integrated circuit can function as an amplifier, oscillator, timer, microprocessor, or even
computer memory.

Gordon E. Moore, a co-founder of the semiconductor company Intel, is the person
behind the formulation of Moore’s Law.

In 1965, Moore observed that the number of transistors on integrated circuits
had doubled every year since their invention and predicted that this trend would
continue into the foreseeable future.

Moore’s initial observation was made during a time when the integrated circuit industry
was in its infancy and technological advances were rapid. His prediction was first articulated
in an Electronics Magazine article titled “Cramming more components onto integrated cir-
cuits” (1965). In his prediction’s initial formulation, Moore suggested that the number of
transistors on a microchip would double every year.
CHAPTER 3. HISTORY OF HPC- p.33/83 Dr Nikos Bakas

A decade later, in 1975, based on the changing pace of technology, he revised his
projection, estimating a doubling approximately every two years.

The significance of Moore’s Law is that it has been used as a guideline for setting
targets in the semiconductor industry, leading to the rapid evolution of electronic
devices, which have become faster, cheaper, and more efficient with time. However, it is
important to note that Moore’s Law is a projection, not a physical or natural law,
and as we approach the limits of physics and economics, the pace of advancement predicted
by Moore’s Law has slowed. Despite the periodic predictions of its demise, Moore’s
Law has persisted as a driving force of technological and social change.

CHAPTER 3. HISTORY OF HPC- p.34/83 Dr Nikos Bakas

Hannah Ritchie and Max Roser, https://ourworldindata.org/uploads/2020/11/Transistor-
Count-over-time.png https://creativecommons.org/licenses/by/4.0

CHAPTER 3. HISTORY OF HPC- p.35/83 Dr Nikos Bakas

Moore’s Law doesn’t directly predict an increase in FLOPS, but it does have
a strong correlation. With more transistors on a chip, chip designers can dedicate more
resources to floating-point operations, leading to a higher theoretical FLOPS rating. How-
ever, factors like chip architecture and memory bandwidth also play a role in determining
real-world performance.

• More Transistors: Moore’s Law allows for more transistors on a chip.

• Dedicated Processing Units: These additional transistors can be used to create spe-
cialized processing units optimized for floating-point calculations.

• Increased FLOPS: With more dedicated resources, the chip can potentially achieve a
higher FLOPS rating.

CHAPTER 3. HISTORY OF HPC- p.36/83 Dr Nikos Bakas

3.8 AI and compute
Since 2102 we observe a 3.4-month doubling in computing power used to train AI models.
https://openai.com/research/ai-and-compute

CHAPTER 3. HISTORY OF HPC- p.37/83 Dr Nikos Bakas

https://openai.com/research/ai-and-compute

CHAPTER 3. HISTORY OF HPC- p.38/83 Dr Nikos Bakas

Chapter 4

Programming Models in HPC

HPC applications are often developed using programming models that support parallelism:

• OpenMP (Open Multi-Processing): An application programming interface (API)
that supports multi-platform shared-memory multiprocessing programming.

• MPI (Message Passing Interface): Used for programming parallel computers. It
involves processes sending and receiving messages to achieve parallelism.

• GPGPU (General-Purpose computing on Graphics Processing Units): Utilizes
GPUs to perform computation in applications traditionally handled by the CPU.

These models come with their own set of libraries and compilers that are designed
to optimize performance by taking full advantage of the hardware capabilities present
within HPC environments.

39

4.1 OpenMP (Open Multi-Processing)
OpenMP is an application programming interface (API) that supports multi-platform shared-
memory multiprocessing programming in C, C++, and Fortran. It is used to direct
multi-threaded shared-memory parallelism.

Key Concepts:

• Shared Memory: In a shared memory system, all processors have access to a common
memory space.

• Threads: A thread is the smallest sequence of programmed instructions that can be
managed independently by the scheduler.

• Parallel Region: A section of code that is executed by multiple threads simultaneously.

• Directives: Compiler directives are used to specify parallel regions and work sharing
among threads.

• Synchronization: Mechanisms to coordinate the execution of multiple threads, such as
barriers, locks and atomic operations.

CHAPTER 4. PROGRAMMING MODELS IN HPC- p.40/83 Dr Nikos Bakas

Simple Example:

#include <omp.h>
#include <stdio.h>

int main() {
 #pragma omp parallel
 {
 printf("Hello from thread %d\n", omp_get_thread_num());
 }
 return 0;
}

In this example, the #pragma omp parallel directive indicates the start of a parallel
region, where the enclosed code block is executed by each thread concurrently. The function
omp_get_thread_num() returns the identifier of the current thread.

CHAPTER 4. PROGRAMMING MODELS IN HPC- p.41/83 Dr Nikos Bakas

4.2 MPI (Message Passing Interface)
MPI is a standardized and portable message-passing system designed to function on a vari-
ety of parallel computing architectures. The API permits point-to-point and collective
communication among computing nodes in a distributed-memory environment.

Key Concepts:

• Distributed Memory: Each processor has its own private memory. Processors require
a mechanism (like MPI) to communicate data.

• Processes: An independent unit of program execution that runs in its own memory
space.

• Communicator: An MPI object that defines a group of processes that can communicate
with each other.

• Point-to-Point Communication: Sending a message from one process to another.

• Collective Communication: Performing operations involving a group of processes,
such as broadcasting, gathering, and scatter.

CHAPTER 4. PROGRAMMING MODELS IN HPC- p.42/83 Dr Nikos Bakas

Simple Example:

#include <mpi.h>
#include <stdio.h>

int main(int argc, char *argv[]) {
 MPI_Init(&argc, &argv);

 int rank;
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 printf("Hello from process %d\n", rank);

 MPI_Finalize();
 return 0;
}

In the above MPI example, MPI_Init initializes the MPI environment, MPI_Comm_rank
gets the rank of the current process, and MPI_Finalize is used to clean up the MPI envi-
ronment.

CHAPTER 4. PROGRAMMING MODELS IN HPC- p.43/83 Dr Nikos Bakas

4.3 GPUs (Graphics Processing Units)
GPUs are specialized processors that rapidly manipulate and alter memory to accelerate the
creation of images in a frame buffer intended for output to a display. Due to their highly
parallel structure, GPUs are also used for more general computing tasks requiring high
throughput.

Key Concepts:

• SIMD (Single Instruction, Multiple Data): GPUs follow the SIMD paradigm,
executing one instruction across many data elements in parallel.

• Stream Processors: The basic compute units in a GPU that carry out computations
in parallel.

• Kernel: In the context of GPUs, a kernel is a function that is executed on the GPU to
perform data-parallel computations.

• Threads and Blocks: The execution configuration of GPU kernels, where threads are
the smallest units of execution, and blocks are groups of threads that execute on the
GPU.

CHAPTER 4. PROGRAMMING MODELS IN HPC- p.44/83 Dr Nikos Bakas

4.4 CUDA (Compute Unified Device Architecture)
CUDA is a parallel computing platform and programming model developed by NVIDIA
for general computing on its own GPUs. With CUDA, developers can dramatically speed
up computing applications by harnessing the power of GPUs.

Key Concepts:

• Device vs. Host: In CUDA, the term "device" refers to the GPU, and "host" refers
to the CPU.

• Memory Model: CUDA features different memory spaces, such as global, shared, con-
stant, and local memory, each with its own scope and lifetime.

• Threads Hierarchy: Threads are organized into blocks, and blocks are organized
into grids.

• CUDA Kernels: A piece of code that runs on the GPU. Kernels are defined using
the __global__ declaration specifier and are called from the host code.

Simple Example:

__global__ void add(int *a, int *b, int *c, int size) {
 int index = threadIdx.x + blockIdx.x * blockDim.x;
 if (index < size) {
 c[index] = a[index] + b[index];
 }
}

CHAPTER 4. PROGRAMMING MODELS IN HPC- p.45/83 Dr Nikos Bakas

int main() {
 // Initialize a, b, c arrays on the host and copy them to device.
 // Define total number of elements 'n' and so on.
 ...
 int *d_a, *d_b, *d_c; // Device pointers
 // Allocate memory for device copies of a, b, c
 // Handle errors for each cudaMalloc and cudaMemcpy as needed
 ...
 // Launch add() kernel on GPU with N blocks
 add<<<N, 1>>>(d_a, d_b, d_c, n);
 // Copy result back to host
 // Handle errors for cudaMemcpy as needed
 ...
 // Cleanup
 ...
 return 0;
}

This CUDA C code snippet outlines how to define a kernel function for parallel execution
on a device (GPU). It performs vector addition across GPU threads. The main function
handles necessary device memory allocations, data transfer between the host and device, the
execution of the kernel, and eventually the cleanup. This general pattern forms the basis of
computing with NVIDIA GPUs using CUDA.

CHAPTER 4. PROGRAMMING MODELS IN HPC- p.46/83 Dr Nikos Bakas

Chapter 5

State of the art machines
5.1 The Top 500 list

• The Top 500 list is a ranking of the world’s 500 most powerful non-distributed
computer systems. The list is compiled twice a year.

• Performance of the supercomputers on the Top 500 list is measured using the LIN-
PACK Benchmark. This benchmark tests the system’s ability to solve a dense system
of linear equations, providing a measure of the computer’s floating-point rate of execution.

• Top 5 as of the Latest List:

– Frontier (USA): The only exascale machine on the list with an HPL score of 1.194
EFlop/s.

– Aurora (USA): Entered the list at No. 2 with an HPL score of 585.34 PFlop/s,
based on half of the final planned system.

– Eagle (Microsoft Azure Cloud, USA): Achieved No. 3 spot with an HPL score
of 561.2 PFlop/s, the highest rank a cloud system has ever achieved.

– Fugaku (Japan): Moved to No. 4 with an HPL score of 442.01 PFlop/s.
– LUMI (Finland): Positioned at No. 5 with an HPL score of 379.70 PFlop/ s.

47

5.1.1 Exponential Growth

Figure 5.1: AI.Graphic - Own work

https://creativecommons.org/licenses/by-sa/3.0/

https://en.wikipedia.org/wiki/TOP500#/media/File:Supercomputers-history.svg

CHAPTER 5. STATE OF THE ART MACHINES- p.48/83 Dr Nikos Bakas

5.2 Top 8 European Supercomputers

The EuroCC project, Europe aims to democratize access to supercomputing resources,
enabling SMEs across the continent to leverage AI, high-performance data analytics, and
simulations, thereby fostering innovation, competitiveness, and growth in the European
digital economy.

It utilizes computing resources at the National and European Level, exploiting
the EuroHPC Joint Undertaking Supercomputers: https://eurohpc-ju.europa.eu/
supercomputers/our-supercomputers_en

1. LUMI (CSC, Finland)

• LUMI-C: 1536 nodes, 128 cores/node, 256-1024 GB RAM/node
• GPU: 2560 nodes, 64 cores/node, 4 GPUs, 128 GB GPU-RAM
• Visualization: 64 nodes, 1 GPU, 48 GB GPU-RAM
• Peak Performance: 550 petaflops
• URL: https://www.lumi-supercomputer.eu/lumis-full-system-architecture-revealed/

2. Leonardo (Cineca, Italy)

• Booster Module: 3456 nodes, 32 cores/node, 512 GB RAM/node, 4 GPUs, 64 GB
GPU-RAM

• Data Centric Module: 1536 nodes, 112 cores/node, 512 GB RAM/node
CHAPTER 5. STATE OF THE ART MACHINES- p.49/83 Dr Nikos Bakas

https://eurohpc-ju.europa.eu/supercomputers/our-supercomputers_en
https://eurohpc-ju.europa.eu/supercomputers/our-supercomputers_en

• Peak Performance: 323.4 petaflops
• URL: https://leonardo-supercomputer.cineca.eu/hpc-system/

3. MareNostrum 5 (Barcelona Supercomputing Center, Spain)

• General Purpose Partition: 6408 nodes, 112 cores/node, 256 GB RAM/node
• Accelerated Partition: 1120 nodes, 64 cores/node, 512 GB RAM/node, 4 GPUs, 64

GB GPU-RAM
• Peak Performance: 314 petaflops
• URL: https://www.bsc.es/innovation-and-services/marenostrum/marenostrum-5

4. MeluXina (LuxProvide, Luxembourg)

• Cluster: 573 nodes, 128 cores/node, 512 GB RAM/node
• Accelerator-GPU: 200 nodes, 64 cores/node, 512 GB RAM/node, 4 GPUs, 40 GB

GPU-RAM
• Large memory: 20 nodes, 128 cores/node, 4096 GB RAM/node
• Peak Performance: 18.29 petaflops
• URL: https://docs.lxp.lu/system/overview/

5. Karolina (IT4I, Czech Republic)

• CPU: 828 nodes, 128 cores/node, 256-24000 GB RAM/node
• GPU: 72 nodes, 8 GPUs, 40 GB GPU-RAM
• Peak Performance: 15.69 petaflops

CHAPTER 5. STATE OF THE ART MACHINES- p.50/83 Dr Nikos Bakas

• URL: https://www.it4i.cz/en/infrastructure/karolina

6. Vega (IZUM, Slovenia)

• GPU partition: 60 nodes, 128 cores/node, 512 GB RAM/node, 4 GPUs, 40 GB GPU-
RAM

• CPU node Standard: 768 nodes, 128 cores/node, 256 GB RAM/node
• CPU node Large Memory: 192 nodes, 128 cores/node, 1000 GB RAM/node
• Peak Performance: 10.05 petaflops
• URL: https://doc.vega.izum.si/architecture/

7. Deucalion (Guimarães, Portugal)

• ARM cluster: 1632 nodes, 48 cores/node
• X86 cluster: 500 nodes, 48+ cores/node
• Accelerated partition: 33 nodes
• Peak Performance: 10 petaflops
• URL: https://macc.fccn.pt/resources#deucalion

8. Discoverer (Sofia Tech Park, Bulgaria)

• CPU: 1128 nodes, 128 cores/node, 256 GB RAM/node
• CPU-Fat: 18 nodes, 128 cores/node, 1000 GB RAM/node
• Peak Performance: 5.94 petaflops
• URL: https://docs.discoverer.bg/resource_overview.html

CHAPTER 5. STATE OF THE ART MACHINES- p.51/83 Dr Nikos Bakas

CHAPTER 5. STATE OF THE ART MACHINES- p.52/83 Dr Nikos Bakas

Chapter 6

EuroCC Services

6.1 Greece’s HPC Competence Center

Enhancing innovation capacity in Business, Industry and Science by utilizing advanced
High Performance Computing services.

53

6.2 Artificial Intelligence (AI)

• Access to Cutting-edge Technology:
Research organizations and Enterprises
gain access to advanced AI computing re-
sources, enabling them to develop and re-
fine AI models with efficiency and un-
precedented speed.

• Innovation and Competitive Edge:
Leveraging AI through supercomputers
helps organizations innovate, creating new
products and services, thus staying com-
petitive in a rapidly evolving digital land-
scape.

• Large Language Models: Enable fine-
tuning for custom applications, enhanc-
ing precision and relevance in industry-
specific contexts, driving targeted out-
comes and efficiencies.

• AI Skill Development: Offers training
and skill development in AI technologies
for organizations and individuals, helping
them to build in-house expertise and ap-
ply AI solutions effectively.

CHAPTER 6. EUROCC SERVICES- p.54/83 Dr Nikos Bakas

6.3 High-Performance Data Analytics (HPDA)

• Data Processing at Scale: HPDA
equips SMEs with the capability to pro-
cess and analyze large datasets, overcom-
ing the limitations often faced due to
smaller infrastructures

• Large Image Analysis for Climate
Studies: HPDA enables the analysis of
large and complex image datasets (such as
satellite imagery) for SMEs involved in en-
vironmental research, climate studies, or
related fields.

• Healthcare Applications: accelerate
the analysis of medical images or genetic
data, leading to faster diagnosis and per-
sonalized treatments.

• Retail Markets: process customer data
to tailor marketing strategies or improve
personalized customer experience.

CHAPTER 6. EUROCC SERVICES- p.55/83 Dr Nikos Bakas

6.4 High-performance Simulations

• Engineering Simulations: Utilizing
methods like finite elements to analyze
and design complex structures, mecha-
nisms, or systems in various engineering
fields.

• Molecular Simulations: Modeling and
understanding the behavior of molecular
systems, including the discovery of new
materials. By simulating the interac-
tions at the atomic or molecular level, re-
searchers can predict the properties of ma-
terials before they are synthesized, leading
to advances in materials science.

• Drug Discovery: By simulating the in-
teraction between drug molecules and bi-
ological targets, researchers can identify
promising drug candidates, significantly

speeding up the drug discovery process
and reducing the need for early-stage lab-
oratory experiments.

• Physics Simulations: Pivotal for un-
derstanding complex physical phenomena
into areas like astrophysics, quantum me-
chanics, and particle physics, enhancing
our understanding of the universe’s fun-
damental laws.

CHAPTER 6. EUROCC SERVICES- p.56/83 Dr Nikos Bakas

6.5 EuroCC Success Stories

The EuroCC ACCESS success stories showcase a variety of successful experiments con-
ducted within the EuroCC projects, highlighting the business benefits derived from these
collaborations.

These experiments involve partners from industry, society, and academia, and cover a wide
range of applications such as:

• Transfer and optimization of CFD calculations workflow in HPC environment

• Anomaly Detection in Time Series Data: Gambling prevention using Deep Learning

• Multimodal Prediction of Alexithymia from Physiological and Audio Signals

• Enabling HPC Usage for Expensive ML Tasks on Manufacturing Environments

• Rebar cutting optimisation using a cloud computing environment

• The Estonian COVID-19 Data Portal and KoroGeno-EST

• And many more!

https://www.eurocc-access.eu/success-stories/

CHAPTER 6. EUROCC SERVICES- p.57/83 Dr Nikos Bakas

https://www.eurocc-access.eu/success-stories/

CHAPTER 6. EUROCC SERVICES- p.58/83 Dr Nikos Bakas

Chapter 7

Apply for Access at EuroHPC JU

7.1 EuroHPC JU Benchmark Access
The purpose of the EuroHPC JU Benchmark Access calls is to support researchers and
HPC application developers by giving them the opportunity to test or benchmark their
applications on the upcoming/available EuroHPC Pre-exascale and/or Petascale system
prior to applying for an Extreme Scale and/or Regular Access. The EuroHPC Benchmark
call is designed for code scalability tests or for test of AI applications and the outcome
of which is to be included in the proposal in a future EuroHPC Extreme Scale and Regular
Access call. Users receive a limited number of node hours; the maximum allocation
period is three months.

59

.

7.2 EuroHPC JU Development Access
The purpose of the EuroHPC JU Development Access calls is to support researchers and
HPC application developers by giving them the opportunity to develop, test and opti-
mise their applications on the upcoming/available EuroHPC Pre-exascale and/or Petas-
cale system prior to applying for an Extreme Scale and/or Regular Access. The EuroHPC
Development call is designed for projects focusing on code and algorithm development
and optimisation, as well as development of AI application methods. This can be in
the context of research projects from academia or industry, or as part of large pub-
lic or private funded initiatives as for instance Centres of Excellence or Competence
Centres. Users will typically be allocated a small number of node hours; the allocation
period is one year and is renewable up to two times.

CHAPTER 7. APPLY FOR ACCESS AT EUROHPC JU- p.60/83 Dr Nikos Bakas

.

7.3 EuroHPC JU Regular Access
The Regular Access mode is designed to serve research domains, industry open R&D and
public sector applications that require large-scale resources or that require more frequent
access to substantial computing and storage resources. This access mode distributes
resources, mostly from the EuroHPC JU petascale systems.

This Regular Access Call offers three distinctive application tracks:

• Scientific Access – Intended for applications from the academia and public research
institutes.

• Industry Access – Intended for applications with Principal Investigator (PIs) coming
from industry.

• Public Administration Access – Intended for applications with PIs coming from the
public sector.

CHAPTER 7. APPLY FOR ACCESS AT EUROHPC JU- p.61/83 Dr Nikos Bakas

.

7.4 EuroHPC JU Extreme Access
The Extreme Scale Access Mode call is targeting HPC applications with high-impact
and high-gain innovative research. This access mode distributes resources, from the
EuroHPC pre-exascale systems.

This call offers three distinctive application tracks:

• Scientific Access – Intended for applications from the academia and public research
institutes.

• Industry Access – Intended for applications with Principal Investigator (PIs) coming
from industry.

• Public Administration Access – Intended for applications with PIs coming from the
public sector.

CHAPTER 7. APPLY FOR ACCESS AT EUROHPC JU- p.62/83 Dr Nikos Bakas

.

7.5 EuroHPC JU Access Call for AI and Data-Intensive Applica-
tions

Call Details:
The EuroHPC JU AI and Data-Intensive

Applications Access call aims to support ethi-
cal artificial intelligence, machine learn-

ing, and in general, data-intensive ap-
plications, with a particular focus on foun-
dation models and generative AI (e.g.
large language models).

The call is intended to serve industry
organizations, small to medium enter-
prises (SMEs), startups, as well as pub-
lic sector entities, requiring access to su-
percomputing resources to perform artificial
intelligence and data-intensive activities.

https://eurohpc-ju.europa.eu/eurohpc-ju-access-call-ai-and-data-intensive-applications_
en

CHAPTER 7. APPLY FOR ACCESS AT EUROHPC JU- p.63/83 Dr Nikos Bakas

https://eurohpc-ju.europa.eu/eurohpc-ju-access-call-ai-and-data-intensive-applications_en
https://eurohpc-ju.europa.eu/eurohpc-ju-access-call-ai-and-data-intensive-applications_en

CHAPTER 7. APPLY FOR ACCESS AT EUROHPC JU- p.64/83 Dr Nikos Bakas

CHAPTER 7. APPLY FOR ACCESS AT EUROHPC JU- p.65/83 Dr Nikos Bakas

7.6 Frequently Asked Questions (FAQ)

https://eurohpc-ju.europa.eu/access-our-supercomputers/access-policy-and-faq_en

CHAPTER 7. APPLY FOR ACCESS AT EUROHPC JU- p.66/83 Dr Nikos Bakas

https://eurohpc-ju.europa.eu/access-our-supercomputers/access-policy-and-faq_en

7.7 Indicative Application

https://pracecalls.eu/

CHAPTER 7. APPLY FOR ACCESS AT EUROHPC JU- p.67/83 Dr Nikos Bakas

https://pracecalls.eu/

7.7.1 The project

CHAPTER 7. APPLY FOR ACCESS AT EUROHPC JU- p.68/83 Dr Nikos Bakas

7.7.2 Research Fields

Figure 7.1: Enter Caption

CHAPTER 7. APPLY FOR ACCESS AT EUROHPC JU- p.69/83 Dr Nikos Bakas

CHAPTER 7. APPLY FOR ACCESS AT EUROHPC JU- p.70/83 Dr Nikos Bakas

7.7.3 Societal impact

CHAPTER 7. APPLY FOR ACCESS AT EUROHPC JU- p.71/83 Dr Nikos Bakas

7.7.4 CPU Partition

CHAPTER 7. APPLY FOR ACCESS AT EUROHPC JU- p.72/83 Dr Nikos Bakas

7.7.5 Input / Ouput

CHAPTER 7. APPLY FOR ACCESS AT EUROHPC JU- p.73/83 Dr Nikos Bakas

7.7.6 GPU Partition

CHAPTER 7. APPLY FOR ACCESS AT EUROHPC JU- p.74/83 Dr Nikos Bakas

7.7.7 Code Details

Figure 7.2: Enter Caption

CHAPTER 7. APPLY FOR ACCESS AT EUROHPC JU- p.75/83 Dr Nikos Bakas

7.7.8 Scalability & Performance

Any scalability tests prior to the application are useful to highlight here!
The machine should be utilized as optimally as possible!

CHAPTER 7. APPLY FOR ACCESS AT EUROHPC JU- p.76/83 Dr Nikos Bakas

7.7.9 Optimization

CHAPTER 7. APPLY FOR ACCESS AT EUROHPC JU- p.77/83 Dr Nikos Bakas

7.7.10 Performance

CHAPTER 7. APPLY FOR ACCESS AT EUROHPC JU- p.78/83 Dr Nikos Bakas

7.7.11 Data Consent

https://eurohpc-ju.europa.eu/eurohpc-ju-call-proposals-development-access_en

CHAPTER 7. APPLY FOR ACCESS AT EUROHPC JU- p.79/83 Dr Nikos Bakas

https://eurohpc-ju.europa.eu/eurohpc-ju-call-proposals-development-access_en

CHAPTER 7. APPLY FOR ACCESS AT EUROHPC JU- p.80/83 Dr Nikos Bakas

Chapter 8

Resources

• EuroCC Sweden: How to apply for access to EuroHPC JU supercomputers https://www.
youtube.com/watch?v=g5jOio006-E

• ENCCS (NCC Sweden): "How to use the PRACE-calls portal - Application to JU su-
percomputers" Seminar https://www.youtube.com/watch?v=N1QqMh7HOmQ

• NCC Greece: https://eurocc-greece.gr/how-to-apply-for-access-to-eurohpc-ju-supercomputers/

• HPC wiki: https://hpc-wiki.info/hpc/HPC_Wiki

81

https://www.youtube.com/watch?v=g5jOio006-E
https://www.youtube.com/watch?v=g5jOio006-E
https://www.youtube.com/watch?v=N1QqMh7HOmQ
https://eurocc-greece.gr/how-to-apply-for-access-to-eurohpc-ju-supercomputers/
https://hpc-wiki.info/hpc/HPC_Wiki

CHAPTER 8. RESOURCES- p.82/83 Dr Nikos Bakas

Thank you!

Introduction to High-Performance Computing
Dr Nikos Bakas nibas@grnet.gr

National Infrastructures for Research and Technology - GRNET

https://eurocc-greece.gr/

83

nibas@grnet.gr
https://eurocc-greece.gr/

	General Concepts of High Performance Computing (HPC)
	Scaling
	History of HPC
	Programming Models in HPC
	State of the art machines
	EuroCC Services
	Apply for Access at EuroHPC JU
	Resources

