
How to turn an on-premises LLM into a Digital Assistant for the EU

K. Chasapas, I.T. Christou, G. Lalas, P. Lapas, M. Logothetis, K. Thivaios
Research & Innovation Development

Netcompany-Intrasoft

Page 2

• Multi-table Data generation companies review and POC: Nov-2023 we have conducted a scouting activity for ECB (European Central bank) to provide a

benchmarking for all synthetic data providers, based on ECB’s requirements. This has led to a POC with MostlyAI. It is the first time that we have identified the

need for an on-premise domain-specific LLM

• -- research projects (there was the need for such IT solution) and for AI characteristics (ISO certification: un-BIAS, certification, traceability [evenflow])

• Xxx digital assistant has been our trigger point to design and develop our on-premise LLM approach

Goal: Build an on-premise domain-specific LLM, to perform well-defined tasks dictated by organizational guidelines,
taking into consideration corporate data, product data, corporate policies, and industry terminologies.

Story, Vision and Roadmap

ECB POC

Nov 23

Multi-table Data generation

companies review and POC

[ECB]

Mar 24

1st version digital assistant

demonstrated

Apr 24

Back-office features

implemented

Nov 24

Full service in production

Page 3

• Domain-specific Large Language Model (LLM), designed for deployment within a secure, on-site infrastructure, equipped with security

protocols to safely handle and analyze sensitive information, ensuring adherence to sector-specific data protection standards.

Domain-specific LLM and main use cases

Page 4

On-premise pipeline

Data Gathering
Text

Processing

Building
Knowledge

Graphs
LLM Selection

Prompt
Engineering

Training and
Tuning the

LLM

Model
Deployment

UI Integration

Testing and
Evaluation

Monitoring
and

Maintenance

Page 5

✓ Data Gathering
▪ Use python-oriented libraries for extracting text from PDFs, Excel and Word files
▪ Store the extracted text data in an open-source DB

✓ Text Processing
▪ Utilize python libraries for text preprocessing tasks such as tokenization etc.
▪ Implement custom text cleaning functions to remove noise, special characters, and perform normalization.
▪ Explore techniques like word embedding for capturing semantic relationships between words.
▪ Augment text preprocessing with XAI techniques to provide insights into model predictions.
▪ Ensure transparency and trustworthiness by documenting preprocessing steps and transformations applied to the

text data.

On-premise pipeline

Page 6

✓ Building Knowledge Graphs
▪ Construct knowledge graphs using open-source libraries.
▪ Use techniques such as Named Entity Recognition (NER) and Dependency Parsing to extract entities and

relationships from text data.
▪ Consider graph database technologies for storing and querying knowledge graphs efficiently.
▪ Enrich knowledge graph construction with explainable methods for relationship inference.

✓ Prompt Engineering
▪ Employ techniques for prompt engineering to fine-ture the language model for specific tasks or domains.
▪ Experiment with different prompt templates, prefixing strategies, and control codes to guide the model's generation

process effectively.
▪ Utilize open-source libraries like Hugging Face’s ‘transformers’ for implementing prompt-based fine-tuning and

generation.
▪ Incorporate explainable prompt engineering techniques by providing users with control over prompt generation

parameters and displaying generated prompts alongside model predictions.
▪ Implement mechanisms to explain how prompts influence model behavior and predictions to enhance

trustworthiness.

On-premise pipeline
Utilize open-source libraries like Hugging Face's transformers for implementing prompt-based fine-tuning and generation.

Page 7

✓ Training and Tuning the LLM
▪ Leverage Hugging Face’s ‘transformers’ library fir training and fine-tuning pre-trained language models such as

Mistral, Falcon, etc.
▪ Utilize open-source frameworks like PyTorch or TensorFlow for model training, allowing for flexibility and

customization.
▪ Explore techniques like transfer learning and domain adaptation to adapt pre-trained models to specific tasks or

domains.

✓ Model Deployment
▪ Deploy the trained language model as a RESTful API using open-source frameworks like Flask or FastAPI for serving

predictions over HTTP.
▪ Utilize containerization technologies like Docker for packaging the model and its dependencies into lightweight and

portable containers.
▪ Host the deployed model on open-source platforms like Kubernetes for scalability and resource management.

On-premise pipeline
Utilize open-source libraries like Hugging Face's transformers for implementing prompt-based fine-tuning and generation.

Thank you

netcompany-intrasoft.com

