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• Multi-table Data generation companies review and POC: Nov-2023 we have conducted a scouting activity for ECB (European Central bank) to provide a 

benchmarking for all synthetic data providers, based on ECB’s requirements. This has led to a POC with MostlyAI. It is the first time that we have identified the 

need for an on-premise domain-specific LLM

• -- research projects (there was the need for such IT solution) and for AI characteristics (ISO certification: un-BIAS, certification, traceability [evenflow])

• Xxx digital assistant has been our trigger point to design and develop our on-premise LLM approach

Goal: Build an on-premise domain-specific LLM, to perform well-defined tasks dictated by organizational guidelines, 
taking into consideration corporate data, product data, corporate policies, and industry terminologies.
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• Domain-specific Large Language Model (LLM), designed for deployment within a secure, on-site infrastructure, equipped with security 

protocols to safely handle and analyze sensitive information, ensuring adherence to sector-specific data protection standards.

Domain-specific LLM and main use cases
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✓ Data Gathering
▪ Use python-oriented libraries for extracting text from PDFs, Excel and Word files
▪ Store the extracted text data in an open-source DB

✓ Text Processing
▪ Utilize python libraries for text preprocessing tasks such as tokenization etc.
▪ Implement custom text cleaning functions to remove noise, special characters, and perform normalization.
▪ Explore techniques like word embedding for capturing semantic relationships between words.
▪ Augment text preprocessing with XAI techniques to provide insights into model predictions.
▪ Ensure transparency and trustworthiness by documenting preprocessing steps and transformations applied to the 

text data.

On-premise pipeline
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✓ Building Knowledge Graphs
▪ Construct knowledge graphs using open-source libraries.
▪ Use techniques such as Named Entity Recognition (NER) and Dependency Parsing to extract entities and 

relationships from text data.
▪ Consider graph database technologies for storing and querying knowledge graphs efficiently.
▪ Enrich knowledge graph construction with explainable methods for relationship inference.

✓ Prompt Engineering
▪ Employ techniques for prompt engineering to fine-ture the language model for specific tasks or domains.
▪ Experiment with different prompt templates, prefixing strategies, and control codes to guide the model's generation 

process effectively.
▪ Utilize open-source libraries like Hugging Face’s ‘transformers’ for implementing prompt-based fine-tuning and 

generation.
▪ Incorporate explainable prompt engineering techniques by providing users with control over prompt generation 

parameters and displaying generated prompts alongside model predictions.
▪ Implement mechanisms to explain how prompts influence model behavior and predictions to enhance 

trustworthiness.

On-premise pipeline
Utilize open-source libraries like Hugging Face's transformers for implementing prompt-based fine-tuning and generation.



Page 7

✓ Training and Tuning the LLM
▪ Leverage Hugging Face’s ‘transformers’ library fir training and fine-tuning pre-trained language models such as 

Mistral, Falcon, etc.
▪ Utilize open-source frameworks like PyTorch or TensorFlow for model training, allowing for flexibility and 

customization.
▪ Explore techniques like transfer learning and domain adaptation to adapt pre-trained models to specific tasks or 

domains.

✓ Model Deployment
▪ Deploy the trained language model as a RESTful API using open-source frameworks like Flask or FastAPI for serving 

predictions over HTTP.
▪ Utilize containerization technologies like Docker for packaging the model and its dependencies into lightweight and 

portable containers.
▪ Host the deployed model on open-source platforms like Kubernetes for scalability and resource management.

On-premise pipeline
Utilize open-source libraries like Hugging Face's transformers for implementing prompt-based fine-tuning and generation.
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